|
|
Prediction of Load Model Based on Artificial Neural Network |
Li Long1, Wei Jing1, Li Canbing1, Cao Yijia1, Song Junying2, Fang Baling1 |
1. College of Electric and Information Engineering Hunan University Changsha 410082 China; 2. Hunan Dispatching Center Changsha 410007 China |
|
|
Abstract Load model is a key element to power grid stability analysis. It is one of the significant bases for power system simulation analysis and calculation. If the next day’s load model of maximum and minimum load can be predicted, it would provide more credible reference information for dispatching department to make operation mode and decisions. Through the influence factors analysis of load model, the parameters of static ZIP load model are predicted by the method of load forecasting of artificial neural network(ANN). The sensitivity analysis between load model parameters and load value helps to control the relation and influence of them and find the way to reduce the error. The case based on active power load model of minimum load proposed in this paper shows the feasibility of the method and the nice application effect of the forecasted load model.
|
Received: 11 June 2013
Published: 25 May 2015
|
|
|
|
|
[1] Zhang Tianshu, Sheng Wanxing, Song Xiaohui, et al. Probabilistic modeling and simulation of stochastic load for power system studies[C]. 2013 UKSim 15th International Conference on Computer Modeling and Simulation, Cambridge, 2013: 519-524. [2] Han Dong, Zhang Guoqiang, Lin Tao, et al. The effect of load models on electromagnetic transient stability in AC/DC power systems[C]. 2012 China International Conference on Electricity Distribution, Shanghai, 2012: 1-4. [3] Xu Yanhui, Si Dajun, Qian Yingchun. Effect of load model on Yunnan power grid transient stability[C]. 2011 Asia-Pacific Power and Energy Engineering Conference, Wuhan, 2011: 1-4. [4] Forrest S Chassin, Ebony T, Marcelo A Elizondo, et al. Load modeling and calibration techniques for power system studies[C]. 2011 North American Power Symposium, Boston, 2011: 1-7. [5] Visconti I F, Souza L F W de, Costa J M S C, et al. From power quality monitoring to transient stability analysis: measurement-based load modeling for dynamic simulations[J].2010 14th International Conference on Harmonics and Quality of Power, Bergamo, 2010: 1-7. [6] Satish Ranade, Abraham Ellis, Jeff Mechenbier. The development of power system load models from measurements[C]. 2001 IEEE/PES Transmission and Distribution Conference and Exposition, Atlanta, GA, 2001, 1: 201-206. [7] Guo H, Rudion K, Abildgaard H, et al. Parameter estimation of dynamic load model using field measure- ment data performed by OLTC operation[C]. 2012 IEEE Power and Energy Society General Meeting, San Diego, 2012: 1-7. [8] 王振树, 李林川, 牛丽. 基于贝叶斯证据框架的支持向量机负荷建模[J]. 电工技术学报, 2009, 24(8): 127-140. Wang Zhenshu, Li Linchuan, Niu Li. Load modeling based on support vector machine based on Bayesian evidence framework[J]. Transactions of China Electro- technical Society, 2009, 24(8): 127-140. [9] 姚建刚, 陈亮, 戴习军, 等. 混沌神经网络负荷建模的理论研究[J]. 中国电机工程学报, 2002, 22(3): 99-102. Yao Jiangang, Chen Liang, Dai Xijun, et al. Academic research of load modeling with chaotic neural network [J]. Proceedings of the CSEE, 2002, 22(3): 99-102. [10] Li Xinran, Wang Lide, Li Peiqiang. The study on composite load model structure of Artificial neural network[J]. IEEE Electric Utility Deregulation and Restructuring and Power Technologies, 2008: 1564- 1570. [11] Mao Yi, Wang Xiaohui, Yang Fan, et al. Research on synthesis load modeling with online statistical measure- ment-based method[C]. 2011 International Conference on Consumer Electronics, Communications and Net- works(CECNet), Xianning, 2011: 16-18. [12] Shi Guoping, Liang Jun, Liu Xiangsheng. Load cluste- ring and synthetic modeling based on an improved fuzzy c means clustering algorithm[C]. Electric Utility Deregulation and Restructuring and Power Tech- nologies, 2011 4th International Conference, 2011: 859-865. [13] 谢会玲, 鞠平, 陈谦, 等. 广域电力系统负荷整体建模方法[J]. 电力系统自动化, 2008, 32(1): 1-5. Xie Huiling, Ju Ping, Chen Qian, et al. Electric load modeling for wide area power systems[J]. Automation of Electric Power Systems, 2008, 32(1): 1-5. [14] 管秀鹏, 孙元章, 程林. 电力负荷与系统广域动态特征的相关度[J]. 电力系统自动化, 2008, 32(15): 7-11. Guan Xiupeng, Sun Yuanzhang, Cheng Lin. Correla- tion of loads to wide-area dynamic characters of power systems[J]. Automation of Electric Power Systems, 2008, 32(15): 7-11. [15] 鞠平, 刘伟航, 项丽, 等. 电力系统负荷建模的自动故障拟合法[J]. 电力系统自动化, 2013, 37(10): 60-64. Ju Ping, Liu Weihang, Xiang Li, et al. Automatic post-disturbance simulation based method for power system load modeling[J]. Automation of Electric Power Systems, 2013, 37(10): 60-64. [16] Yuan Renfeng, Ai Qian, He Xing. Research on dynamic load modeling based on power quality monitoring system[J]. Generation, Transmission & Distribution, IET, 2013, 7(1): 46-51. [17] 李培强, 李欣然, 林舜江. 电力负荷建模研究述评[J]. 电力系统及其自动化学报, 2008, 20(5): 56-64. Li Peiqiang, Li Xinran, Lin Shunjiang. Critical review on synthesis load modeling[J]. Proceedings of the CSU-EPSA, 2008, 20(5): 56-64. [18] 章健. 电力系统负荷模型与辨识[M]. 北京: 中国电力出版社, 2007. [19] 罗建. 系统灵敏度理论导论[M]. 西安: 西北工业大学出版社, 1990. [20] 陈太聪, 韩大建, 苏成. 参数灵敏度分析的神经网络方法及其工程应用[J]. 计算力学学报, 2004, 21(6): 752-756. Chen Tiancong, Han Dajian, Su Chen. Neural network method in parameter sensitivity analysis and its application in engineering[J]. Chinese Journal of Computational Mechanics, 2004, 21(6): 752-756. |
|
|
|