|
|
A New Definition of the Hysteron in Hybrid Vector Hysteresis Model |
Li Dandan1, Liu Fugui1, Li Yongjian1, Zhao Zhigang1, Yang Qingxin1, 2 |
1. Province Ministry Joint Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability Hebei University of Technology Tianjin 300130 China; 2. Tianjin Key Laboratory of AEEET Tianjin Polytechnic University Tianjin 300387 China |
|
|
Abstract A new definition of hysteron is presented in this paper based on classical Preisach and Stoner-Wohlfarth(S-W) hysteresis model. The magnetic properties and the determining rule of magnetization direction of ellipse magnetic particles with single domain and uniaxial anisotropy are analyzed qualitatively via studying the variation of energy density. The critical surface equations of the hysterons of anisotropy and isotropy materials are defined using the equipotential curves of vector field produced by magnetic particles, so that the hysteron is a closed region surrounded by equipotential curves. The determination of magnetization direction of hysteron is discussed at later chapter of the paper. The hysteron defined in this paper is consistent with the second principle of thermodynamics and Mandelung rules, and has loss property and deletion property.
|
Received: 29 September 2013
Published: 23 March 2015
|
|
|
|
|
[1] Preisach F. Über die magnetische nachwirkung[J]. Zeitschrift Für Physik, 1935, 94(5-6): 277-302. [2] Coleman B D, Hodgdon M L. A constitutive relation for rate-independent hysteresis in ferro-magnetically soft materials[J]. International Journal of Engineering Science, 1986, 24(6): 897-919. [3] Stoner E C, Wohlfarth E P. A mechanism of magnetic hysteresis in heterogeneous alloys[J]. IEEE Transactions on Magnetics, 1991, 27(4): 3475-3518. [4] Jiles D C, Atherton D L. Theory of ferromagnetic hysteresis[J]. Journal of Magnetism and Magnetic Materials, 1986, 61(1): 48-60. [5] Mayergoyz I D. Mathematical models of hysteresis [M]. New York: Springer Verlag, 1991. [6] Della Torre E. Magnetic hysteresis[M]. New York: IEEE Press, 1999. [7] Michelakis C, Litsardakis G, Samaras D. A contribu- tion to 2D vector preisach modelling[J]. Journal of Magnetism and Magnetic Materials, 1996, 157: 347- 348. [8] Koh C S, Hahn S, Park G S. Vector hysteresis modeling by combining stoner-wohlfarth and preisach models [J]. IEEE Transactions on Magnetics, 2000, 36(4): 1254-1257. [9] Della Torre E, Pinzaglia E, Cardelli E. Vector modeling- part I: Generalized hysteresis model[J]. Physica B: Condensed Matter, 2006, 372(1): 111-114. [10] Della Torre E, Pinzaglia E, Cardelli E. Vector modeling- part II: ellipsoidal vector hysteresis model, numerical application to a 2D case[J]. Physica B: Condensed Matter, 2006, 372(1): 115-119. [11] Della Torre E, Cardelli E. A preisach-stoner-wohlfarth vector model[J]. IEEE Transactions on Magnetics, 2006, 42(10): 3126-3128. [12] Kahler G R, Della Torre E, Cardelli E. Implementation of the preisach-stoner-wohlfarth classical vector model [J]. IEEE Transactions on Magnetics, 2010, 46(1): 21-28. [13] Cardelli E, Della Torre E, Pinzaglia E. Magnetic energy and radial vector model of hysteresis[J]. Journal of Applied Physics, 2006, 99(8): 08D703-08D703-3. [14] Della Torre E, Cardelli E, Bennett L H. Identifying hysteresis losses in magnetic media[J]. IEEE Transac- tions on Magnetics, 2010, 46(11): 3844-3847. [15] Della Torre E, Bennett L H, Jin Y. An effect of particle size on the behavior of ferromagnetic materials [J]. Journal of Magnetism and Magnetic Materials, 2012, 324(14): 2189-2192. [16] Cardelli E, Della Torre E, Faba A. Properties of a class of vector hysteron models[J]. Journal of Applied Physics, 2008, 103(7): 07D927-07D927-3. [17] Cardelli E, Della Torre E, Faba A. Analysis of a unit magnetic particle via the DPC model[J]. IEEE Transac- tions on Magnetics, 2009, 45(11): 5192-5195. [18] Cardelli E, Della Torre E, Faba A. Numerical imple- mentation of the DPC model[J]. IEEE Transactions on Magnetics, 2009, 45(3): 1186-1189. [19] Cardelli E. A general hysteresis operator for the mode- ling of vector fields[J]. IEEE Transactions on Magnetics, 2011, 47(8): 2056-2067. [20] Cardelli E, Della Torre E, Faba A. A general vector hysteresis operator: Extension to the 3-D case[J]. IEEE Transactions on Magnetics, 2010, 46(12): 3990-4000. [21] Mandelung E. On the magnetization by fast current and an operation principle of the magneto-detectors of rut herford-marconi[J]. Ann Phys, 1905, 17: 861-890. |
|
|
|