|
|
Two-Dimensional Vector Hysteresis Simulation of Soft Magnetic Composite Materials Based on the Hybrid Algorithm of PSO-Powell |
Zhao Xiaojun1, Xu Huawei1, Liu Xiaona2, Li Yongjian3, Du Zhenbin4 |
1. Department of Electrical and Electronic Engineering North China Electric Power University Baoding 071003 China; 2. Xi’an Huawei Technologies Co. Ltd Xi’an 710075 China; 3. Province-Ministry Joint Key laboratory of Electromagnetic Field and Electrical Apparatus Reliability Hebei University of Technology Tianjin 300130 China; 4. Hebei Provincial Key Laboratory of Electromagnetic & Structural Performance of Power Transmission and Transformation Equipment Baoding 071056 China |
|
|
Abstract An improved vector hysteresis model was proposed because the classical vector Preisach model can only simulate the isotropic hysteresis characteristics of materials. The improved model was utilized to regulate the curve shape of magnetic field strength by introducing the correlation parameters of its amplitude and direction angle. Accordingly, the anisotropy characteristics of soft magnetic composite (SMC) materials can be considered. The experiment for measuring the two- dimensional rotational magnetic properties of the SMC material was carried out by the vector magnetic property platform. The measured limiting hysteresis loops were required to construct the scalar and vector Everett functions. Moreover, a hybrid optimization strategy based on particle swarm optimization (PSO) and Powell technique was proposed to identify the parameters of the vector Preisach hysteresis model efficiently, which significantly improved the local optimization ability of the PSO algorithm. The simulation results are consistent with the measurement results, which verifies the effectiveness of the improved vector model and the parameter identification method proposed in this paper.
|
Received: 16 April 2020
|
|
|
|
|
[1] Zhu Jianguo, Guo Youguang, Lin Zhiwei, et al.Measurement and modeling of SMC materials under vector magnetizations[C]//Electrical Machines and Systems, Nanjing, 2005: 2354-2359. [2] 张晓祥, 张卓然, 刘业, 等. 双端励磁内置转子磁分路混合励磁电机设计与转子强度分析[J]. 电工技术学报, 2018, 33(2): 245-254. Zhang Xiaoxiang, Zhang Zhuoran, Liu Ye, et al.Design and rotor strength analysis of a hybrid excitation synchronous machine with dual-direction built-in field windings[J]. Transactions of China Electrotechnical Society, 2018, 33(2): 245-254. [3] 王韶鹏, 刘成成, 汪友华, 等. 软磁复合材料永磁电机的6σ 稳健多学科设计优化方法[J]. 电工技术学报, 2019, 34(4): 637-645. Wang Shaopeng, Liu Chengcheng, Wang Youhua, et al.6σ robust multidisciplinary design optimization method for permanent magnet motors with soft magnetic composite cores[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 637-645. [4] Guo Youguang, Zhu Jianguo, Watterson P A, et al.Development of a PM transverse flux motor with soft magnetic composite core[J]. IEEE Transactions on Energy Conversion, 2006, 21(2): 426-434. [5] 徐衍亮, 王冰冰, 高启龙, 等. 软磁复合材料及其在永磁无刷电机中的应用[J]. 电机与控制学报, 2018, 22(4): 75-80, 88. Xu Yanliang, Wang Bingbing, Gao Qilong, et al.Soft magnetic composite material and its application in permanent magnet brushless motors[J]. Electric Machines and Control, 2018, 22(4): 75-80, 88. [6] Xu Weijie, Duan Nana, Wang Shuhong, et al.Modeling and measurement of magnetic hysteresis of soft magnetic composite materials under different magnetizations[J]. IEEE Transactions on Industrial Electronics, 2017, 64(3): 2459-2467. [7] Li Dandan, Qiao Zhenyang, Yang Na, et al.Study on vector magnetic properties of magnetic materials using hybrid hysteresis model[J]. CES Transactions on Electrical Machines and Systems, 2019, 3(3): 292-296. [8] 韩力, 蔡瑞环, 沈超凡, 等. 10MW高速实心转子感应电动机损耗计算与温升分析[J]. 电机与控制学报, 2018, 22(12): 44-53. Han Li, Cai Ruihuan, Shen Chaofan, et al.Loss calculation and temperature rise analysis of 10MW high-speed solid rotor induction motor[J]. Electric Machines and Control, 2018, 22(12): 44-53. [9] 迟青光, 张艳丽, 任亚军, 等. 铁心旋转损耗模型改进与局部损耗测试[J]. 电工技术学报, 2018, 33(17): 3951-3957. Chi Qingguang, Zhang Yanli, Ren Yajun, et al.Improvement on rotational loss model and measure- ment of local loss in the iron core[J]. Transactions of China Electrotechnical Society, 2018, 33(17): 3951-3957. [10] Yang Qingxin, Li Yongjian, Zhao Zhenghan, et al.Design of a 3-D rotational magnetic properties measurement structure for soft magnetic materials[J]. IEEE Transactions on Applied Superconductivity, 2014, 24(3): 1-4. [11] Moses A J.Importance of rotational losses in rotating machines and transformers[J]. Journal of Materials Engineering & Performance, 1992, 1(2): 235-244. [12] Hernandez-Aramburo C A, Green T C, Smith A C. Estimating rotational iron losses in an induction machine[J]. IEEE Transactions on Magnetics, 2003, 39(6): 3527-3533. [13] 王园弟, 张艳丽, 张殿海, 等. 无取向电工钢片旋转磁致伸缩的动态测量与分析[J]. 电工技术学报, 2018, 33(12): 2735-2741. Wang Yuandi, Zhang Yanli, Zhang Dianhai, et al.Dynamic measurement and analysis of rotational magnetostriction in the non-oriented electrical steel sheet[J]. Transactions of China Electrotechnical Society, 2018, 33(12): 2735-2741. [14] Li Yongjian, Yang Qingxin, Zhu Jianguo, et al.Research of three-dimensional magnetic reluctivity tensor based on measurement of magnetic pro- perties[J]. IEEE Transactions on Applied Super- conductivity, 2010, 20(3): 1932-1935. [15] Stoner E C, Wohlfarth E P.A mechanism of magnetic hysteresis in heterogeneous alloys[J]. IEEE Transa- ctions on Magnetics,1991, 27(4): 3475-3518. [16] Mayergoyz I D.Mathematical model of hysteresis and their applications[M]. New York: Academic Press, 2003. [17] 段娜娜, 徐伟杰, 李永建, 等. 基于矢量磁滞算子的软磁复合材料旋转磁滞特性模拟分析[J]. 电工技术学报, 2018, 33(10): 2268-2273. Duan Nana, Xu Weijie, Li Yongjian, et al.Rotational magnetic hysteresis of soft magnetic composite materials based on the elemental operator method[J]. Transactions of China Electrotechnical Society, 2018, 33(10): 2268-2273. [18] 王旭, 张艳丽, 唐伟, 等. 旋转磁化下逆矢量Jiles- Atherton磁滞模型改进[J]. 电工技术学报, 2018, 33(增刊2): 257-262. Wang Xu, Zhang Yanli, Tang Wei, et al.Improve- ment of inverse vector Jiles-Atherton hysteresis model under rotating magnetization[J]. Transactions of China Electrotechnical Society, 2018, 33(S2): 257-262. [19] Kuczmann M, Iványi A.Vector hysteresis model based on neural network[J]. COMPEL: The Inter- national Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2003, 22(3): 730-743. [20] Kuczmann M.Measurement and simulation of vector hysteresis characteristics[J]. IEEE Transactions on Magnetics, 2009, 45(11): 5188-5191. [21] Soda N, Enokizono M.Utilization method of elec- trical steel sheets on stator of self-propelled rotary actuator[C]//IEEE Xxii International Conference on Electrical Machines, Lausanne, 2016: 918-923. [22] 张长庚, 杨庆新, 李永建. 电工软磁材料旋转磁滞损耗测量及建模[J]. 电工技术学报, 2017, 32(11): 208-216. Zhang Changgeng, Yang Qingxin, Li Yongjian.Mea- surement and modeling of rotational hysteresis loss of electric soft magnetic material[J]. Transactions of China Electrotechnical Society, 2017, 32(11): 208-216. [23] Dlala E, Belahcen A, Fonteyn K A, et al.Improving loss properties of the mayergoyz vector hysteresis model[J]. IEEE Transactions on Magnetics, 2010, 46(3): 918-924. [24] Zhu Lixun, Wu Weimin, Xu Xiaoyan, et al.An improved anisotropic vector preisach hysteresis model taking account of rotating magnetic fields[J]. IEEE Transactions on Magnetics, 2019, 55(6): 1-4. [25] Mayergoyz I D, Adly A A.A new isotropic vector preisach-type model of hysteresis and its identi- fication[J]. IEEE Transactions on Magnetics, 1993, 29(6): 2377-2379. [26] Dlala E.Efficient algorithms for the inclusion of the preisach hysteresis model in nonlinear finite-element methods[J]. IEEE Transactions on Magnetics, 2011, 47(2): 395-408. [27] Liu Ren, Li Lin.Simulated annealing algorithm coupled with a deterministic method for parameter extraction of energetic hysteresis model[J]. IEEE Transactions on Magnetics, 2018, 54(11): 1-5. [28] 赵志刚, 马习纹, 姬俊安. 基于AFSA与PSO混合算法的J-A动态磁滞模型参数辨识及验证[J]. 仪器仪表学报, 2020, 41(1): 26-34. Zhao Zhigang, Ma Xiwen, Ji Jun’an.Parameter identification and verification of J-A dynamic hysteresis model based on hybrid algorithms of AFSA and PSO[J]. Chinese Journal of Scientific Instrument, 2020, 41(1): 26-34. |
|
|
|