|
|
Two-Objective Optimization of Heat Sink Cooling Performance for High-Power LED Application |
Zhang Jianxin1,2, Niu Pingjuan1,2, Wu Zhigang3, Wang Jingxiang2, Li Hongyue2 |
1.Tianjin Key Laboratory of Advanced Electrical Engineering and Energy Technology, Tianjin Polytechnic University, Tianjin 300387 China; 2.Engineering Research Center of High Power Solid State Lighting Application System Ministry of Education, Tianjin Polytechnic University, Tianjin 300387 China; 3.Liaoning University of Technology, Jinzhou 121001 China |
|
|
Abstract According to the design requirements of heat sink applied in high-power LED for increasing cooling performance but reducing mass, a two-objective optimization design, including junction temperature and fins mass, is performed respectively based on orthogonal experiment design method and genetic algorithm. In early stages of optimization design, some structural variables for optimization such as fin spacing, fin height and fin thickness are determined through referring to previous researching results. And the constraint of each structural variable is assigned according to the suggestion structure. On this basis, the junction temperatures and fins masses are calculated respectively through thermal circuit method and calculation formula of fin mass, for the different combination cases of above three structural variables. In the process of optimization design, the implementation schemes of above tow optimization methods are illustrated in detail. And both of these optimization methods need to construct the evaluation function of two-objective optimization by applying a weighted sum method. The comparative results between two types of objective values before and after optimization show that, both of optimization methods can offer global optimal solution on Pareto front, and the optimization effects are all obvious, in addition, the genetic algorithm can provide more diversified optimized structures.
|
Received: 22 April 2013
Published: 27 June 2014
|
|
|
|
|
[1] Yung K C, Liem H, Choy H S, et al. Thermal performance of high brightness LED array package on PCB[J]. International Communications in Heat and Mass Transfer, 2010, 37(9): 1266-1272. [2] 廖志凌, 阮新波. 半导体照明工程的现状与发展趋势[J]. 电工技术学报, 2006, 21(9): 106-111. Liao Zhiling, Ruan Xinbo. Present status and developing trend of the semiconductor lighting[J]. Transactions of China Electrotechnical Society, 2006, 21(9): 106-111. [3] Maaspuro Mika, Tuominen Aulis. Thermal analysis of LED spot lighting device operating in external natural or forced heat convection[J]. Microelectronics Reliabi- lity, 2013, 53(3): 428-434. [4] Ramos-Alvarado Bladimir, Feng Bo, Peterson G P. Comparison and optimization of single-phase liquid cooling devices for the heat dissipation of high-power LED arrays[J]. Applied Thermal Engineering, 2013, 59(1-2): 648-659. [5] 阎军, 孙兴盛, 王乜, 等. 半导体照明灯具典型散热结构分析与优化[J]. 固体力学学报, 2010, 31(S1): 285-293. Yan Jun, Sun Xingsheng, Wang Mie, et al. Structural optimization for typical radiator of semiconductor lighting[J]. Chinese Journal of Solid Mechanics, 2010, 31(S1): 285-293. [6] Yin Luqiao, Yang Lianqiao, Yang Weiqiao, et al. Thermal design and analysis of multi-chip LED module with ceramic substrate[J]. Solid-State Electronics, 2010, 54(12): 1520-1524. [7] Liou Bo-Hung, Chen Chih-Ming, Horng Ray-Hua, et al. Improvement of thermal management of high- power GaN-based light-emitting diodes[J]. Microelec- tronics Reliability, 2012, 52(5): 861-865. [8] Wang Jung-Chang. Thermal investigations on LED vapor chamber-based plates[J]. International Commu- nications in Heat and Mass Transfer, 2011, 38(9): 1206-1212. [9] Lu Xiangyou, Hua Tse-Chao, Wang Yanping. Thermal analysis of high power LED package with heat pipe heat sink[J]. Microelectronics Journal, 2011, 42(11): 1257-1262. [10] Jang Daeseok, Yu Seung-Hwan, Lee Kwan-Soo. Multidisciplinary optimization of a pin-fin radial heat sink for LED lighting applications[J]. International Journal of Heat and Mass Transfer, 2012, 55(4): 515-521. [11] 王乐, 吴珂, 俞益波, 等. 自然对流条件下LED阵列散热器改进研究[J]. 光电子•激光, 2011, 22 (3): 338-342. Wang Le, Wu Ke, Yu Yibo, et al. Study on LED array heat radiator improvement under natural convection [J]. Journal of Optoelectronics Laser, 2011, 22 (3): 338-342. [12] 吴浩扬, 常炳国, 朱长纯. 遗传算法的一种特例——正交试验设计法[J]. 软件学报, 2001, 12(1): 148-153. Wu Haoyang, Chang Bingguo, Zhu Changchun. A special case of genetic algorithm——orthogonal experimental design method[J]. Journal of Software, 2001, 12(1): 148-153. [13] Louis Gosselin, Maxime Tye-Gingras, François Mathieu- Potvin. Review of utilization of genetic algorithms in heat transfer problems[J]. International Journal of Heat and Mass Transfer, 2009, 52(9-10): 2169-2188. [14] 张琦, 陈旭. LED路灯热分析及散热结构设计[J]. 电子与封装, 2009, 9(5): 44-48. Zhang Qi, Chen Xu. Thermal analysis and structural design of heat sink of LED street lamp[J]. Electronics and Packaging, 2009, 9(5): 44-48. [15] 庄四祥, 张跃宗, 梁鸣娟, 等. 大功率LED路灯的散热结构设计和参数优化[J]. 电子设计工程, 2011, 19(4): 66-69. Zhuang Sixiang, Zhang Yuezong, Liang Mingjuan, et al. Design of the heat dissipation structure and parameters optimization in high-power LED lamp[J]. Electronic Design Engineering, 2011, 19(4): 66-69. [16] 苏华礼, 秦保军. 基于遗传算法的散热器优化设计[J]. 工程设计学报, 2007, 14(1): 31-34, 47. Su Huali, Qin Baojun. Optimal design of heat sinks based on genetic algorithms[J]. Journal of Engineering Design, 2007, 14(1): 31-34, 47. [17] Azarkish H, Sarvari S M H, Behzadmehr A. Optimum design of a longitudinal fin array with convection and radiation heat transfer using a genetic algorithm[J]. International Journal of Thermal Sciences, 2010, 49(11): 2222-2229. [18] 景巍, 谭国俊, 叶宗彬. 大功率三电平变频器损耗计算及散热分析[J]. 电工技术学报, 2011, 26(2): 134-140. Jing Wei, Tan Guojun, Ye Zongbin. Losses calculation and heat dissipation analysis of high-power three-level converters[J]. Transactions of China Electrotechnical Society, 2011, 26(2): 134-140. [19] 何文志, 丘东元, 肖文勋, 等. 高频大功率开关电源结构的热设计[J]. 电工技术学报, 2013, 28(2): 185-191, 218. He Wenzhi, Qiu Dongyuan, Xiao Wenxun, et al. Thermal design of high frequency high power switched- mode power supply[J]. Transactions of China Electrote- chnical Society, 2013, 28(2): 185-191, 218. [20] 唐宗华, 谭震宇, 孙树敏, 等. 大容量金属氧化物限压器通风冷却结构优化设计与计算分析[J]. 电工技术学报, 2013, 28(3): 161-170. Tang Zonghua, Tan Zhenyu, Sun Shumin, et al. Calculation and analysis on ventilation structure of different optimum proposals in large capacity metal oxide varistor[J]. Transactions of China Electrotechnical Society, 2013, 28(3): 161-170. [21] 纽春萍, 陈德桂, 刘颖异, 等. 交流接触器温度场仿真及影响因素的分析[J]. 电工技术学报, 2007, 22(5): 71-77. Niu Chunping, Chen Degui, Liu Yingyi, et al. Temperature field simulation of AC contactor and analysis of its influence factors[J]. Transactions of China Electrotechnical Society, 2007, 22(5): 71-77. [22] 张建新, 牛萍娟, 李红月, 等. 基于等效热路法LED阵列散热性能的研究[J]. 发光学报, 2013, 34(4): 516-522. Zhang Jianxin, Niu Pingjuan, Li Hongyue, et al. Study on the heat dissipation performance of LED array using thermal circuit method[J]. Chinese Journal of Luminescence, 2013, 34(4): 516-522. [23] 张玉军, 莫志江. 文献中正交试验的常见问题分析和解决方法[J]. 中国现代应用药学, 2013, 30(6): 696-700. Zhang Yujun, Mo Zhijiang. Common mistakes made in some literatures when performing orthogonal experiments and solutions[J]. Chinese Journal of Modern Applied Pharmacy, 2013, 30(6): 696-700. |
|
|
|