|
|
Finite Element Analysis Method for Temperature Relationship Between Conductor and Optical Fiber in Optic-Electric Composite Submarine Cable |
Lü Anqiang1, Li Yongqian1,2, Li Jing1, Zhang Xu1, Wu Feilong3 |
1.North China Electric Power University, Baoding 071003 China; 2.Suzhou Institute, North China Electric Power University, Suzhou 215123 China; 3.Fuzhou Power Supply Company State Grid Fujian Electric Power Co.Ltd., Fuzhou 350009 China |
|
|
Abstract It is essential to calculate the temperature of conductors according to the temperature of optical fibers in optic-electric composite submarine cable for monitoring the temperature of conductors and calculating current-carrying capacity. The finite element model of 110kV optic-electric composited submarine cable is established using finite element method in this paper. The thermal load is calculated according to IEC 60287 standard. The effect to temperature distribution of submarine cable and its periphery are analyzed because of different factors, such as load current, environment temperature and convective heat transfer coefficient between soil and seawater. The relational expression for temperatures of conductor, optical fiber and environment is established. Results indicate that, there is a linear relationship between temperatures of conductor and optical fiber. The temperature of optical fiber will rise 1℃ if the temperature of conductor rise 1.3℃. The temperature of conductor must fall 0.3℃ if environment temperature rise 1℃ with constant temperature of optical fiber. The heat from submarine cable is most spread to around soil of 1.6m diameter. The effect of convective heat transfer coefficient to results can be neglected. The temperature of conductor can be calculated according to temperatures of optical fiber and seawater, which can be regarded as the theoretical basis for monitoring the temperature of conductors and calculating current-carrying capacity.
|
Received: 22 April 2012
Published: 27 June 2014
|
|
|
|
|
[1] YE Yincan. Development of submarine optic cable engineering in the past twenty years[J]. Journal of Marine Sciences, 2006, 24(1): 1-10. [2] Thomas Worzyk. Submarine power cables design, installation, repair, environmental aspects[M]. New York: Springer Dordrecht Heidelberg, 2009. [3] 王雅群, 尹毅, 李旭光, 等. 等温松弛电流用于10kV XLPE 电缆寿命评估的方法[J]. 电工技术学报, 2009, 24(9): 33-37. Wang Yaqun, Yin Yi, Li Xuguang, et al. The method of lifetime evaluation on 10kV XLPE cables by isothermal relaxation current[J]. Transactions of China Electrotechnical Society, 2009, 24(9): 33-37. [4] 吴晓文, 舒乃秋, 李洪涛, 等. 气体绝缘输电线路温升数值计算及相关因素分析[J]. 电工技术学报, 2013, 28(1): 65-72. Wu Xiaowen, Shu Naiqiu, Li Hongtao, et al. Temperature rise numerical calculation and correl- ative factors analysis of gas-Insulated transmission lines[J]. Transactions of China Electrotechnical Society, 2013, 28(1): 65-72. [5] 梁永春, 李彦明, 柴进爱, 等. 地下电缆群稳态温度场和载流量计算新方法[J]. 电工技术学报, 2007, 22(8): 185-190. Liang Yongchun, Li Yanming, Chai Jinai, et. al. A new method to calculate the steady-state temperature field and ampacity of underground cable system[J]. Transactions of China Electrotechnical Society, 2007, 22(8): 185-190. [6] 马晓明, 范春菊, 胡天强, 等. 基于周期残差修正灰色模型的输电线路载流量的预测与分析[J]. 电力系统保护与控制, 2012, 40(19): 19-23. Ma Xiaoming, Fan Chunju, Hu Tianqiang, et al. Forecasting and analysis for current carrying capacity of transmission lines based on period residual modification grey model[J]. Power System Protection and Control, 2012, 40(19): 19-23. [7] 马晓明, 范春菊, 胡天强, 等. 基于热稳定约束的架空导线增容计算研究[J]. 电力系统保护与控制, 2012, 40(14): 86-91. Ma Xiaoming1, Fan Chunju1, Hu Tianqiang, et al. Calculation of current carrying capacity of overhead transmission line based on thermal stability constraint [J]. Power System Protection and Control, 2012, 40(14): 86-91. [8] 罗佑坤, 夏慧恒, 钟卫良, 等. 基于虚拟仪表的网络化电缆温度实时监测装置[J]. 电力系统保护与控制, 2009, 37(15): 107-109. Luo Youkun, Xia Huiheng, Zhong Weiliang, et al. A network real-time temperature monitoring device based on the virtual instrument[J]. Power System Protection and Control, 2009, 37(15): 107-109. [9] 蒋奇, 徐于超, 康彦森, 等. 基于分布式布里渊光纤散射传感的海底动力电缆监测技术研究[J]. 化工自动化及仪表, 2009, 36(4): 41-43. Jiang Qi, Xu Yuchao, Kang Yansen, et al. Techno- logical study on distributed brillouin fiber sensor monitoring of High voltage power cable in seabed[J]. Control and Instruments in Chemical Industry, 2009, 36(4): 41-43. [10] Calculation of the current rating-Part 3: Sections on operating conditions. IEC 60287—3. 1999. [11] 梁永春, 王忠杰, 刘建业, 等. 排管敷设电缆群温度场和载流量数值计算[J]. 高电压技术, 2010, 36(3): 763-768. Liang Yongchun, Wang Zhongjie, Liu Jianye1, et al. Numerical calculation of temperature field and ampacity of cables in ducts[J]. High Voltage Engineering, 2010, 36(3): 763-768. [12] 赵健康, 樊友兵, 王晓兵, 等. 高压电力电缆金属护套下的热阻特性分析[J]. 高电压技术, 2008, 34(11): 2483-2487. Zhao Jiankang, Fan Youbing, Wang Xiaobing, et al. Thermal resistance properties of the part between metal sheath and conductor in high-voltage power cable[J]. High Voltage Engineering, 2008, 34(11): 2483-2487. [13] 张朝辉. ANSYS12. 0热分析工程应用实战手册[M]. 北京: 中国铁道出版社, 2010. [14] 马国栋. 电线电缆载流量[M]. 北京: 中国电力出版社, 2003. [15] 张洪麟, 唐军, 陈伟根, 等. 基于有限元法的地下电缆群温度场及载流量的仿真计算[J]. 高压电器, 2010, 46(2): 42-45. Zhang Honglin, Tang Jun, Chen Weigen, et al. Simulation of temperature field and ampacity of underground cable system based on finite element method[J]. High Voltage Apparatus, 2010, 46(2): 42-45. [16] 鲁志伟, 于建立, 郑良华, 等. 交联电缆集群敷设载流量的数值计算[J]. 高电压技术, 2010, 36(2): 481-487. Lu Zhiwei, Yu Jianli, Zheng Lianghua, et al. Numerical calculation of ampacity for XLPE cables in cluster laying[J]. High Voltage Engineering, 2010, 36(2): 481-487. |
|
|
|