|
|
Two Fundamental Physics Issues Need Paying Great Attention in Wireless Power Transmission |
Fan Jing1,2, Yu Fashan3, Zhang Gang1, Tian Zijian4, Liu Jun4 |
1. Nanyang Explosion Protected Electrical Apparatus Research Institute Nanyang 473000 China 2. Nanyang Institute of Technology Nanyang 473004 China 3. Henan Polytechnic University Jiaozuo 454003 China 4. China University of Mining and Technology(Beijing) Beijing 100083 China |
|
|
Abstract Two fundamental physics issues are proposed which should be paid great attention in the study of wireless power transmission theory. ①P-wave solutions of Maxwell equation may exist. ②Tunneling time of magnetic resonance coupling energy. This paper clarifies that wireless power transmission study should be based on classical Maxwell equation. Traditional conclusion of circuit theory study fails to cover the research findings based on “the field”. By adopting time measurement method, this paper proves that under magnetic resonance coupling the power transmission process of wireless power transmission system is similar to quantum tunneling. Therefore further study needs to be carried out on the near field issue of electromagnetic waves propagation. As a theoretical research, this paper puts forward possible solutions of wireless power transmission around the globe.
|
Received: 23 May 2013
Published: 22 May 2014
|
|
|
|
|
[1] 中国科协学会学术部. 无线电能传输关键技术问题与应用前景[M]. 北京: 中国科学技术出版社, 2012. [2] Tesla N. Electrical Energy[Z]. Google Patents, 1914. [3] Cheney M. Tesla: Man out of time[M]. Touchstone, 2011. [4] Brown W C. The history of power transmission by radio waves[J]. IEEE Transactions on Microwave Theory and Techniques, 1984, 32(9): 1230-1242. [5] Karalis A, Joannopoulos J D, Soljacic M. Efficient wireless non-radiative mid-range energy transfer[J]. arXiv Preprint Physics/0611063. 2006. [6] Kurs A, Karalis A, Moffatt R, et al. Wireless power transfer via strongly coupled magnetic resonances[J]. science. 2007, 317(5834): 83-86. [7] Wang B, Teo K H, Nishino T, et al. Experiments on wireless power transfer with metamaterials[J]. Applied Physics Letters. 2011, 98(25): 254101. [8] 谭林林, 黄学良, 黄辉, 等. 基于频率控制的磁耦合共振式无线电能传输系统传输效率优化控制[J]. 中国科学: 技术科学. 2011, 41(7): 913-919. Tan Linlin, Huang Xueliang, Huang Hui et al. Transfer efficiency optimal control of magnetic resonance coupled system of wireless power transfer based on frequency control[J]. China science: Technology science. 2011, 41(7): 913-919. [9] 代小磊, 牛王强, 孟祥成. 非接触电能传输(CPT) 系统频率分裂现象分析[J]. 电源学报. 2012(3): 67-71. Dai Xiaolei. Niu Wangqiang, Meng Xiangcheng. The analysis of the phonomenon of the frenquency splitting of the system of CPT[J]. Journal of Power Supply. 2012(3): 67-71. [10] John D. Kraus R J M. 天线[M]. 章文勋译. 3版. 北京: 电子工业出版社, 2006: 155-167. [11] 梁昌洪, 陈曦. 电磁理论前沿札记[M]. 北京: 电子工业出版社, 2012: 294-296. [12] 赵凯华. 再论位移电流与传导电流不以同样规律(方式) 激发磁场[J]. 大学物理. 2001, 20(8): 29-31. Zhao Kaihua. Once more arguing for the displacement current does not produce magnetic field by the same way as the conduction current does[J]. College Physics. 2001, 20(8): 29-31. [13] Tesla N. The True Wireless[J]. Electrical Experimenter. 1919, 2(5): 1-13. [14] Pendry J B, Holden A J, Robbins D J, et al. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075-2084. [15] Zhang J, Huangfu J, Luo Y, et al. Cloak for multilayered and gradually changing media[J]. Physical Review B. 2008, 77(3): 35116. [16] Chen J, Wang Y, Jia B, et al. Observation of the inverse Doppler effect in negative-index materials at optical frequencies[J]. Nature Photonics. 2011, 5(4): 239-245. [17] 胡望雨, 陈秉乾, 舒幼生. 电磁学专题研究[M]. 北京: 高等教育出版社, 2003. [18] Meyl K. Scalar Waves: Theory and experiments1[J]. Journal of Scientific Exploration. 2001, 15(2): 199-205. [19] 刘卫平, 席德科, 杨新铁. 利用连续介质力学方法研究超光速现象[J]. 光子学报. 2008, 36(6): 1250-1254. Lui Weiping, Xi Deke, Yang Xintie. Research on Super-light Speed Phenomema with Continuum Medium Mechanical Methods[J]. Acta Photonica Sinica. 2008, 36(6): 1250-1254. [20] 张操. 物理时空理论探讨 超越相对论的尝试[M]. 上海: 上海科学技术文献出版社, 2011. [21] Pozar D M, 张肇仪, 周乐柱, 等. 微波工程[M]. 电子工业出版社, 2006: 90-97. [22] 黄志洵. 波导截止现象的量子类比[J]. 电子科学学刊. 1985, 7(3): 232-237. Huang Zhixun. An Attempt to Explain the cut-off Phenomenon of Waveguide with Quantum Mechanics[J]. Journal of Electronics. 1985, 7(3): 232-237. [23] 黄志洵. 论消失态[J]. 中国传媒大学学报: 自然科学版. 2008, 15(3): 1-19. Huang Zhixun. Theory of disappear state[J]. Journal of communication university of China: Natural Science. 2008, 15(3): 1-19. [24] Enders A, Nimtz G. Evanescent-mode propagation and quantum tunneling[J]. Physical Review E. 1993, 48(1): 632-634. [25] Nimtz G, Heitmann W. Superluminal photonic tunneling and quantum electronics[J]. Progress in Quantum Electronics. 1997, 21(2): 81-108. [26] Ranfagni A, Mugnai D. Anomalous pulse delay in microwave propagation: A case of superluminal behavior[J]. Physical Review E. 1996, 54(5): 5692-5696. [27] Budko N V. Observation of locally negative velocity of the electromagnetic field in free space[J]. Physical Review Letters. 2009, 102(2): 20401. [28] 熊彩东, 王智勇. Superluminal behaviour of modified bessel waves[J]. 中国物理快报. 2006, 23(9): 2422- 2425. Xiong Caidong, Wang Zhiyong. Superluminal Behaviour of Modified Bessel Waves[J]. Chinese Physics Letters. 2006, 23(9): 2422-2425. [29] 樊京, 周治平, 田子建. 自由空间磁力线速度测量实验[J]. 中国传媒大学学报: 自然科学版. 2013, 20(2): 64-67. Fan Jing, Zhou Zhiping, Tian Zijian. Measurement of Magnetic Line of Force Velocity in Free Space[J]. Journal of communication university of China: Natural. 2013, 20(2): 64-67. [30] Kosinov N V, Garbaruk V I. Single-wire electric power transmission[J]. |
|
|
|