|
|
Calculation and Analysis of Eddy Loss and Temperature Field in Rotor of Synchronous Generator under Steady State and Negative Sequence |
Li Weili1, Sun Jiahui2, Sun Hongli3 |
1.Bijing Jiaotong University Beijing 100044 China 2.Harbin University of Science and Technology Harbin 150040 China 3.State-Owned Beijing Shuguang Motor Factory Beijing 100028 China |
|
|
Abstract 150MW air-cooled turbo generator is taken as an example in this paper. According to electromagnetic and heat transfer theory, two-dimensional mathematical model of electromagnetic field and temperature field are established respectively using finite element method. Eddy current loss generated by negative sequence current (steady-state negative sequence) and temperature rise in the rotor are calculated. In order to obtain different materials on temperature rise of the rotor, eddy current loss and temperature rise are calculated when slot wedge two kinds of material are aluminum and aluminum bronze respectively. Also eddy current losses and temperature rise are calculated under the rotor poles surface without slot wedge and compared to the loss and temperature rise in the situation of poles surface with slot wedge. Some useful conclusions are obtained.
|
Received: 11 January 2011
Published: 20 March 2014
|
|
|
|
|
[1] Pollard E I. Effects of negative-sequence currents on turbine-generator rotors[J]. Transactions of the American Institute of Electrical Engineers, 1953, 72(2): 404-406. [2] 王金瑞, 方德明, 梁昌乾, 等. QFQ-50-2型氢冷发电机转子铝槽楔甩脱原因分析[J]. 热力发电, 1992(2): 44-51. [3] Jack A G. Calculation of 3D electromagnetic fields involving laminar eddy current[J]. IEE Proceedings A: Physical Science, 1987, 134(8): 663-671. [4] 胡显承, 姚若萍. 发电机端部磁场的有限元分析[J].清华大学学报(自然科学版), 1982, 22(3): 89-102. [5] Hossain M A. Mixed convection flow of micropolar fluid over an isothermal plate with variable spin gradient viscosity[J]. Acta Mechanic, 2007, 70(3): 87-95. [6] 黄学良, 胡敏强. 电机三维温度场新的有限元计算模型[J]. 中国电机工程学报, 1998, 18(2): 78-82. [7] Takahashi N, Kawamura T. Improvement of unbalanced current capability of large turbine generators[J]. IEEE Transactions on Power Apparatus and Systems, 1975, 94(4): 1390-1400. [8] Demerdash N A, Howard B Hamilton, Gordon W Brown. Simulation for design purposes of magnetic fields in turbogenerators with symmetrical and asymmetrical rotors[J]. IEEE Transactions on Power Apparatus and Systems, 1972, 91(5): 1985-1999. [9] Ichida Y. 大型汽轮发电机负序电流承载能力研究[J]. 国外大电机, 1997(1): 38-44. [10] 周德贵. 提高大型汽轮发电机承受负序电流能力的措施[J]. 四川电力技术, 1980(5): 3-7. [11] Jack A G, Stoll R L. Negative-sequence currents and losses in the solid rotor of a turbogenerator[J]. IEE Proceedings of Generation, Transmission and Distribution, 1980, 127(2): 53-64. [12] 汤蕴璆. 电机内的电磁场[M]. 北京:科学出版社, 1981. [13] 汤蕴璆. 电机学[M]. 北京: 机械工业出版社, 2001. [14] 李永生. 负序电流及其对汽轮发电机的危害[J]. 华北电力技术, 1994(9): 9-12. [15] 张文辉. 负序电流及其对汽轮发电机的危害[J]. 西北水力发电, 2006(22): 29-31. [16] 路义萍. 大型空冷汽轮发电机转子流场与温度场数值模拟[D]. 哈尔滨: 哈尔滨理工大学, 2007. [17] 俞昌铭. 热传导及其数值分析[M]. 北京: 清华大学出版社, 1981. [18] 丁舜年. 大型电机的发热与冷却[M]. 北京:科学出版社, 1992. [19] 温志伟. 蒸发冷却汽轮发电机负序能力的改进计算[J]. 电工电能新技术, 2004, 23(4): 34-37. Wen Zhiwei. The calculation of improved evaporative cooling turbo generator negative sequence capability[J]. Advanced Technology of Electrical Engineering and Energy, 2004, 23(4): 34-37. |
|
|
|