|
|
A Fault Diagnosis Approach of Analog Circuit Using Wavelet-Based Fractal Analysis and Kernel LDA |
Xiao Yingqun1, Feng Lianggui1, He Yigang2 |
1. National University of Defense Technology Changsha 410073 China 2. Hefei University of Technology Hefei 23009 China |
|
|
Abstract A neural-network fault diagnosis approach utilizing wavelet-based fractal analysis method and kernel linear discriminant analysis(KLDA) as preprocessors is proposed. The diagnostic approach preprocesses the fault response signals in such a way that the wavelet-based fractal analysis obtains the fractal-dimension features of fault response signals, and KLDA further extracts the optimal features used as the inputs to neural-network classifier. The simulation results show that the proposed method can acquire the essential features of fault response signals and display better performance than other methods. Furthermore, the resulting neural networks not only have the small structures but also can achieve high accuracy of fault diagnosis.
|
Received: 10 September 2010
Published: 20 March 2014
|
|
|
|
|
[1] Bandler J W, Salama A E. Fault diagnostic of analog circuits[J]. Proc. IEEE, 1985, 73(8): 1279-1325. [2] Spina R, Upadhyaya S. Linear circuit fault diagnosis using neuromorphic analyzers[J]. IEEE Transactions on Circuits and Systems II, 1997, 44( 3): 188-196. [3] Aminian M, Aminian F. Neural-network based analog- circuit fault diagnosis using wavelet transform as preprocessor[J]. IEEE Trans. Circuits. Syst.-II, 2000, 47(2): 151-156. [4] Aminian F, Aminian M, Collins H W. Analog fault diagnosis of actual circuits using neural networks [J]. IEEE Trans. Instrum. Meas., 2002, 51(3): 544-550. [5] He Y, Tan Y, Sun Y. Wavelet neural network approach for fault diagnosis of analog circuits[J].IEE Proc. Circuits Devices Syst., 2004, 151(4): 379-384. [6] 肖迎群, 何怡刚. 基于脊波网络的模拟电路故障诊断[J]. 电工技术学报, 2010, 25(6): 155-162. Xiao Yingqun, He Yigang. A fault diagnosis method of analog circuit based on ridgelet network[J]. Transactions of China Electrotechnical Society, 2010. 25(6): 155-162. [7] Xiao Yingqun, He Yigang. A linear ridgelet network approach for fault diagnosis of analog circuit[J]. Sci China Ser F-Inf. Sci, 2010, 53(11): 2251-2264. [8] Yuan Lifen, He Yigang, Huang Jiaoying, et al. A new neural-network-based fault diagnosis approach for analog circuits by using Kurtosis and entropy as a preprocessor[J]. IEEE Trans. Instrum. Meas., 2010, 59(3): 586-595. [9] Falconer J. Fractal geometry-mathematical foundati- ons and applications[M]. West Sussex: John Wiley and Sons, 2003. [10] Kartz M. Fractals and the analysis of waveforms[J]. Comput. Biol. Med., 1988, 18(3):145-156. [11] Rosana Esteller, George Vachtsevanos, Javier Echauz, et al. A comparison of waveform fractal dimension algorithms[J]. IEEE Transactions on Circuitd and Systems-Ⅰ: Fundamental Theory and Applications, 2001, 48(2): 177-183. [12] Raghavendra B S, Narayana Dutt D. A note on fractal dimensions of biomedical waveforms[J]. Comput. Biol. Med., 2009, 39(9): 1006-1012. [13] Bishop C M. Neural networks for pattern recognition [M]. New York: Oxford Univ. Press, 1995. [14] Fukunaga K. Introduction to statistical pattern recognition[M]. New York: Academic, 1990. [15] Schölkopf B, Smola A, Muller K R. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Comput., 1998, 10 (3): 1299-1319. [16] Schölkopf B, Smola A, Learning with kernels[M]. Cambridge, MA: MIT Press, 2002. [17] Lu Juwei, Plataniotis K N, Venetsanopoulos A N. Face recognition using kernel direct discriminant analysis algorithms[J]. IEEE Trans. on Neural Networks, 2003, 14 (1) : 117-125. [18] Lu Juwei, Plataniotis K N, Venetsanopoulos A N. Face recognition using LDA-based algorithms[J], IEEE Trans. on Neural Networks, 2003, 14 (1): 195-200. [19] Strang G, Nguyen T. Wavelet and filter banks[M]. Cambridge, MA: Wellesley-Cambridge Press, 1996. [20] Wang Lei, Chan Kap Luk, Xue Ping, et al. A Kernel-induced space selection approach to model selection in KLDA [J]. IEEE Trans. on Neural Networks, 2008, 19 (12): 2116-2131. [21] Wang Lei. Feature selection with kernel class separability[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2008, 30 (9): 1534-1546. [22] Deliyannis T, Sun Y, Fidler J K. Continuous-time active filter[M]. Boca Raton, FL: CRC Press, 1999. |
|
|
|