|
|
Full-Process Hybrid Dynamic Simulation of Long-Term Voltage Stability by Combination of Detailed and Quasi Steady-State Model |
Chen Wenguang, Liu Mingbo |
South China University of Technology Guangdong Key Laboratory of Clean Energy Technology Guangzhou 510640 China |
|
|
Abstract Detailed and quasi steady-state models of full-process hybrid dynamic simulation of long-term voltage stability are discussed; over-excitation limiter, armature current limiter and dynamic load are modeled. By comparing the results of quasi steady-state (QSS) and full time-scale (FTS) simulation, it is discovered that system may not keep transient stability and enter long-term process when severe disturbances trigger discrete equipment to act in succession. Furthermore, judgment of discrete equipments action through QSS simulation is inexact, which causes the system trajectory depart from the real trajectory. Combining FTS, QSS and continuation-based quasi steady-state (CQSS) simulation, and switching properly, the whole-process hybrid dynamic simulation method is constructed, which can keep the transients after disturbances and discrete equipments’ action. It is switched to QSS simulation only when transient process dies out, and switched to CQSS simulation to improve convergence when system trajectory approaches saddle-node bifurcation point and meets convergent problem. The New England 10-machine 39-bus and IEEE 50-machine 145-bus system are used as test systems to prove the limitation of QSS simulation and the applicability of full-process hybrid dynamic simulation.
|
Received: 11 May 2010
Published: 20 March 2014
|
|
|
|
|
[1] 顾群, 徐泰山, 陈怡, 等. 中期电压稳定的建模和快速仿真[J]. 电力系统自动化, 1999, 23(21): 25-28. [2] 徐泰山, 鲍颜红, 薛禹胜, 等. 中期电压稳定的快速仿真算法研究[J]. 电力系统自动化, 2000, 24(24): 9-11. [3] 安宁, 周双喜, 朱凌志. 中长期电压稳定准稳态时域轨迹追踪方法[J]. 电网技术, 2006, 30(20): 40-45. [4] Van Cutsem T, Grenier M E, Lefebvre D. Combined detailed and quasi steady-state time simulations for large-disturbance analysis[J]. Electrical Power and Energy Systems, 2006, 28: 634-642. [5] Qin Wang, Ajjarapu V. Quasi-steady-state analysis by using continuation method[C]. IEEE Power Engineering Society Winter Meeting, 2001, 3: 1300-1304. [6] Qin Wang, Ajjarapu V. A novel approach to implement generic load restoration in continuation-based quasi-steady-state analysis[J]. IEEE Transactions on Power Systems, 2005, 20(1): 516-518. [7] Qin Wang, Hwachang Song, Ajjarapu V. Continuation- based quasi-steady-state analysis[J]. IEEE Transactions on Power Systems, 2006, 21(1): 171-179. [8] 汤涌. 电力系统数字仿真技术的现状与发展[J]. 电力系统自动化, 2002, 26(17): 66-70. [9] 刘益青. 电力系统电压稳定性动态数字仿真的研究[D]. 天津: 天津大学, 2002. [10] 倪以信, 陈寿孙, 张宝霖. 动态电力系统的理论和分析[M]. 北京: 清华大学出版社, 2005. [11] Thierry Van Cutsem, Costas Vournas. Voltage stability of electric power systems[M]. Kluwer Academic Publishers, 1998. [12] 汤涌, 张红斌, 侯俊贤, 等. 负荷建模的基本原则和方法[J]. 电网技术, 2007, 31(4): 1-5. [13] 李欣然, 陈元新, 蒋铁铮, 等. 电压稳定研究中的负荷模型及其建模方法[J]. 电力系统及其自动化学报, 2002, 12(6): 9-13. [14] 周双喜, 朱凌志, 郭锡玖, 等. 电力系统电压稳定性及其控制[M]. 北京: 中国电力出版社, 2004. [15] Thorp J S, Wang Xiaoru, Hopkinton K M, et al. Autonomous systems and intelligent agents in power system control and operation[M]. Berlin: Springer, 2003, 115-154. [16] De Mello F P, Feltes J W. Voltage oscillatory instability caused by induction motor load[J]. IEEE Transactions on Power Systems, 1996, 11(3): 1279-1285. [17] Van Cutsem T, Jacquemart Y, Marquet J N, et al. A comprehensive analysis of mid-term voltage stability[J]. IEEE Transactions on Power Systems, 1995, 10(3): 1173-1182. [18] Van Cutsem T, Vournas C D. Voltage stability analysis in transient and mid-term time scales[J]. IEEE Transactions on Power Systems, 1996, 11(1): 146-154. [19] Xu Wilsun, Yakout Mansour. Voltage stability analysis using generic dynamic load models[J]. IEEE Transactions on Power Systems, 1994, 9(1): 479-493. [20] 宗秀红, 张尧, 武志刚. 电压稳定的概率特征根分析[J]. 中国电机工程学报, 2006, 26(8): 61-64. [21] 陈文广, 刘明波, 林声宏. 长期电压稳定准稳态仿真算法比较[J]. 电网技术, 2009, 33(9): 44-51. [22] Chow J H, Cheung K W. A toolbox for power system dynamics and control engineering education and research[J]. IEEE Transactions on Power Systems, 1992, 7(4): 1559-1564. |
|
|
|