|
|
|
| Magnetic Integrated Coupled Inductance Double Switch High Gain Combined Switched Capacitor Sepic Converter |
| Li Hongzhu1, Chi Cheng’ao1, Guo Yatao1, Li Hongliang2 |
1. School of Electrical and Control Engineering Liaoning Technical University Huludao 125105 China; 2. Schooling of Mining and Coal Inner Monggolia University of Science and Technology Baotou 014010 China |
|
|
|
Abstract In recent years, high-gain DC-DC converters have been widely applied in renewable energy systems, industrial and information equipment, electric vehicles, and charging infrastructure. However, traditional high-gain coupled-inductor DC-DC converters suffer from limitations such as low voltage gain, which necessitates increasing the duty cycle or transformer turns ratio to achieve higher output voltage. It leads to increased losses in switches and diodes, reduced efficiency, and issues like larger transformer volume and leakage inductance, ultimately degrading converter performance. Consequently, research on DC-DC converters with high voltage gain, high power density, and high efficiency has become a focal point. This paper proposes a magnetic-integrated coupled-inductor dual-switch high-gain combined switched- capacitor Sepic converter based on the traditional Sepic topology. The voltage gain is enhanced by integrating coupled inductor voltage-doubling technology with switched capacitor voltage-doubling technology at the rear stage. At the same time, a dual-switch unit is introduced at the front stage to reduce voltage stress on the switches. Magnetic integration is applied to the inductive components. The working principles of the proposed converter are analyzed, key performance parameters are derived, and methods for calculating losses and efficiency are provided. The rationality of the magnetic integration design is verified through magnetic simulation. Finally, an experimental prototype is constructed, and test waveforms are measured. The proposed converter operates with an input voltage of 24 V, a transformer turns ratio of 1, and a duty cycle of 0.25, achieving an output voltage of 216 V and an output power of 200 W. By adjusting the load, the output power can be varied. Theoretical efficiencies at output powers of 160 W, 180 W, 200 W, 220 W, 240 W, and 260 W are 91.9%, 92.4%, 92.7%, 92.9%, 92.8%, and 92.1%, respectively. Under a 200 W load, the experimental efficiency reaches 92.4%. To improve the performance of traditional high-gain DC-DC converters, this paper proposes a magnetic- integrated coupled-inductor dual-switch high-gain combined switched-capacitor Sepic converter. The converter exhibits the following features: (1) The converter can achieve a high voltage gain even at a low-duty cycle and a small turn ratio. When the duty cycle is 0.25 and the turn ratio is 1, the output voltage is 9 times the input voltage. (2) A diode-capacitor branch absorbs voltage spikes caused by leakage inductance, improving the converter's efficiency and limiting the voltage stress on the switches to approximately 23% of the output voltage. (3) By integrating discrete inductors with coupled inductors through magnetic integration technology, the number and volume of magnetic components are reduced, thereby significantly enhancing the overall power density of the converter.
|
|
Received: 17 December 2024
|
|
|
|
|
|
[1] 孙瑄瑨, 荣德生, 王宁. 具有谐振软开关的高增益耦合电感组合Boost-Zeta变换器[J]. 电工技术学报, 2024, 39(6): 1830-1842. Sun Xuanjin, Rong Desheng, Wang Ning.High step- up integrated Boost-Zeta converter with coupled inductor and resonant soft-switching[J]. Transactions of China Electrotechnical Society, 2024, 39(6): 1830-1842. [2] 赵永秀, 刘泽伟, 王崇杰, 等. 变模态倍压型LLC谐振变换器多目标参数优化[J]. 电工技术学报, 2024, 39(22): 7139-7153. Zhao Yongxiu, Liu Zewei, Wang Chongjie, et al.Multi objective parameter optimization of variable mode voltage doubling LLC resonant converter[J]. Transactions of China Electrotechnical Society, 2024, 39(22): 7139-7153. [3] 刘海军, 张理, 张乔根, 等. 基于堆叠滤波结构的高电压比低纹波隔离型DC-DC制氢变换器[J]. 电工技术学报, 2024, 39(18): 5755-5767. Liu Haijun, Zhang Li, Zhang Qiaogen, et al.High- conversion-ratio low-ripple isolated DC-DC hydrogen converter based on stacked filter structure[J]. Transactions of China Electrotechnical Society, 2024, 39(18): 5755-5767. [4] 王哲, 李驰, 郑泽东, 等. 一种基于耦合电感的高增益软开关谐振变换器[J]. 电工技术学报, 2024, 39(1): 194-205. Wang Zhe, Li Chi, Zheng Zedong, et al.A high step-up ZVS/ZCS resonant converter based on coupled inductor[J]. Transactions of China Electro- technical Society, 2024, 39(1): 194-205. [5] Hsieh Y C, Alam M M, Lin Zhongrong, et al.A high voltage-gain Boost converter with coupled-inductor[J]. Journal of the Chinese Institute of Engineers, 2018, 41(1): 1-7. [6] 惠琦, 任小永, 陈乾宏. 采用环形变压器的小功率隔离型DC-DC变换器共模电磁干扰噪声建模与抑制[J]. 电工技术学报, 2024, 39(22): 7126-7138. Hui Qi, Ren Xiaoyong, Chen Ganhong.Common- mode electromagnetic interference noise modeling and suppression for low-power isolated power con- verter using toroidal transformer[J]. Transactions of China Electrotechnical Society, 2024, 39(22): 7126-7138. [7] 周明珠, 刘超, 庄一展, 等. 一种非隔离型双极性输出DC-DC变换器合成方法[J]. 电工技术学报, 2025, 40(12): 3953-3963. Zhou Mingzhu, Liu Chao, Zhuang Yizhan, et al.A synthesis method for non-isolated DC-DC converters with bipolar outputs[J]. Transactions of China Elec- trotechnical Society, 2025, 40(12): 3953-3963. [8] 桑汐坤, 王懿杰, 徐殿国. 基于输入并联输出串联的高效高升压比DC-DC变换器[J]. 电工技术学报, 2023, 38(20): 5488-5502. Sang Xikun, Wang Yijie, Xu Dianguo.High- efficiency high voltage gain DC-DC converter based on input parallel and output series connection[J]. Transactions of China Electrotechnical Society, 2023, 38(20): 5488-5502. [9] 段宛宜, 王辉. 一种Boost级联式高增益DC/DC变换器[J]. 电器与能效管理技术, 2020(2): 54-60. Duan Wanyi, Wang Hui.A dual Boost cascade high gain DC/DC converter[J]. Electrical & Energy Management Technology, 2020(2): 54-60. [10] Axelrod B, Berkovich Y, Ioinovici A.Switched- capacitor/switched-inductor structures for getting transformerless hybrid DC-DC PWM converters[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2008, 55(2): 687-696. [11] 刘树林, 王斌, 朱高中, 等. 基于开关电感的二次型Buck-Boost变换器[J]. 电工技术学报, 2022, 37(增刊1): 190-197. Liu Shulin, Wang Bin, Zhu Gaozhong, et al.Quadratic Buck-Boost converter based on switched inductance[J]. Transactions of China Electrotechnical Society, 2022, 37(S1): 190-197. [12] Prabhala V A K, Fajri P, Gouribhatla V S P, et al. A DC-DC converter with high voltage gain and two input boost stages[J]. IEEE Transactions on Power Electronics, 2015, 31(6): 4206-4215. [13] 李洪珠, 包雨林, 李超, 等. 双耦合电感磁集成开关电容二次型高增益变换器[J]. 电工技术学报, 2025, 40(12): 3964-3976. Li Hongzhu, Bao Yulin, Li Chao, et al.High step-up quadratic converter integrated switched capacitor and two group of coupled inductor along with magnetic integration[J]. Transactions of China Electrotechnical Society, 2025, 40(12): 3964-3976. [14] 余振海, 胡雪峰, 徐紫俊, 等. 单开关高增益低电压应力直流变换器[J]. 电气技术, 2022, 23(7): 34-41. Yu Zhenhai, Hu Xuefeng, Xu Zijun, et al.Single switch high gain low voltage stress DC converter[J]. Electrical Engineering, 2022, 23(7): 34-41. [15] 罗全明, 高伟, 吕星宇, 等. 耦合电感型高增益Boost变换器拓扑分析[J]. 中国电机工程学报, 2017, 37(24): 7266-7275, 7441. Luo Quanming, Gao Wei, Lü Xingyu, et al.Topology analysis of high step-up Boost converters with coupled inductors[J]. Proceedings of the CSEE, 2017, 37(24): 7266-7275, 7441. [16] 丁杰, 高双, 赵世伟, 等. 基于耦合电感的对称式交错并联低输入电流纹波高增益DC-DC变换器[J]. 电工技术学报, 2021, 36(7): 1507-1515. Ding Jie, Gao Shuang, Zhao Shiwei, et al.Symmetrical interleaved low input current ripple high step-up DC-DC converter based on coupled inductor[J]. Transactions of China Electrotechnical Society, 2021, 36(7): 1507-1515. [17] 李洪珠, 程利弘, 魏昕, 等. 耦合电感倍压解耦磁集成高电压增益变换器[J]. 电工技术学报, 2023, 38(6): 1584-1595. Li Hongzhu, Cheng Lihong, Wei Xin, et al.Coupled inductance voltage doubling decoupling magnetic integrated high voltage gain converter[J]. Transa- ctions of China Electrotechnical Society, 2023, 38(6): 1584-1595. [18] Zheng Yifei, Smedley K M.Analysis and design of a single-switch high step-up coupled-inductor boost converter[J]. IEEE Transactions on Power Electronics, 2020, 35(1): 535-545. [19] 王立乔, 臧朔, 李翀, 等. 一种基于对称半桥功率解耦拓扑的单相电流型变换器[J]. 电工技术学报, 2024, 39(24): 7764-7776. Wang Liqiao, Zang Shuo, Li Chong, et al.A single- phase current-source converter based on the sym- metrical half-bridge power decoupling topology[J]. Transactions of China Electrotechnical Society, 2024, 39(24): 7764-7776. [20] 高圣伟, 李永宵, 田金锐, 等. 双频DC-DC变换器的磁集成技术[J]. 电工技术学报, 2024, 39(13): 4025-4036. Gao Shengwei, Li Yongxiao, Tian Jinrui, et al.Magnetic integration of double frequency DC-DC converter[J]. Transactions of China Electrotechnical Society, 2024, 39(13): 4025-4036. [21] 程鹤, 徐恺, 李朋圣, 等. 三相CLLC谐振变换器磁集成平面变压器设计与优化[J]. 电工技术学报, 2024, 39(12): 3774-3786. Cheng He, Xu Kai, Li Pengsheng, et al.Design and optimization of three-phase CLLC resonant converter with magnetic integrated planar transformer[J]. Transactions of China Electrotechnical Society, 2024, 39(12): 3774-3786. [22] 郭瑞, 韩冬, 任佳炜. 一种高增益耦合电感双管Sepic变换器[J]. 电机与控制学报, 2020, 24(7): 130-138. Guo Rui, Han Dong, Ren Jiawei.High gain double- switch Sepic converter with coupled inductors[J]. Electric Machines and Control, 2020, 24(7): 130-138. [23] 李洪珠, 荆泽宇. 一种耦合电感增压直流变换器及其磁集成研究[J]. 电气工程学报, 2022, 17(2): 151-159. Li Hongzhu, Jing Zeyu.A research about DC-DC converter with coupled inductor and its magnetic integration technology[J]. Journal of Electrical Engineering, 2022, 17(2): 151-159. [24] 荣德生, 黄鹤, 孙瑄瑨. 新型高增益耦合电感组合Sepic变换器[J]. 电源学报, 2022, 20(1): 46-55. Rong Desheng, Huang He, Sun Xuanjin.Novel high- gain coupled inductor combination Sepic converter[J]. Journal of Power Supply, 2022, 20(1): 46-55. |
|
|
|