|
|
|
| Key Technologies and Prospects of the Servo Motor for Robot Joints |
| Shi Tingna1,2, Xu Yiyang1,2, Tan Benkang1,2, Yan Dong1,2, Chen Hao1,2, Cao Yanfei1,2 |
1. College of Electrical Engineering Zhejiang University Hangzhou 310027 China; 2. Zhejiang University Advanced Electrical Equipment Innovation Center Hangzhou 311107 China |
|
|
|
Abstract Intelligent robots have gained global interest over the last few years and influence global manufacturing. The optimization of robot hardware highly depends on high-performance joint actuators. Due to their high control accuracy, rapid dynamic response, and mature market, Servo motors have become the mainstream drive components for robot joint actuators. With robots continuously being proposed for high- intelligence requirements, servo motors for robot joints face new opportunities and challenges. However, the research on motor design for robot joints still lacks clear guidance and uniform standards. This paper overviews the current research progress, industry status, and emerging trends of the servo motor for robot joints, clarifying the technical route and pointing out future development. Joint actuators and servo motors can be classified based on the features of robots, as shown in Fig.A1a and Fig.A1b. The joint actuator can be classified into flexible actuators (FA), elastic actuators (EA), and quasi-direct drives (QDD) based on the type of transmission components. According to the combination architecture of transmission components, joint actuators can be classified into cascaded parallel, series coaxial, and embedded coaxial. Servo motors for robot joints include inner rotor radial flux, outer rotor radial flux, axial flux, and coreless. As shown in Fig.A1c, they can be classified into joint actuators and adopted in different robots. The inner rotor radial flux motor has evolved to the cylindric-cascaded type for micro-robots, the frameless-cascaded type for high-load, high-precision robots, and the flat-serial structure for high-dynamic, high-impact robots. It is suitable for robot joints with a diameter of 30~80 mm. The outer rotor radial flux motor has a higher peak torque density and diameter-to-length ratio, ideal for flat-serial, flat-cascaded, and flat- embedded structures. It is commonly used in direct-drive and quasi-direct-drive robots, where the flat-embedded type with a diameter of 100~180 mm is the most widely used for highly compact structures and high peak torque. Axial flux motors have short axial lengths, high torque density, and compact structure, having immense potential when applied in high-load robots, but still need to be improved in thermal design and manufacturing technology. The coreless motor has the advantages of low torque ripple, high efficiency, and fast response. It is fit for small joints with diameters of 8~20 mm, especially the robot’s dexterous hands. The key design technologies for the robot joint motor include conceptual design, electromagnetic analysis with optimal design, thermal analysis with cooling design, and mechanical analysis with reliable design. With high dynamic motion and strong environment adaptability required in universal robots, the technical difficulties that need to be solved are as follows: (1) Thermal analysis and cooling design for the integrated motor drive. (2) Special motor design towards robot joints. (3) High reliable motor design under high impact loads. (4) High torque density motor design adopting new materials and technologies.
|
|
Received: 03 September 2024
|
|
|
|
|
|
[1] 2025-2030年中国具身智能机器人深度分析及发展前景研究预测报告[EB/OL]. https://www.askci.com/reports/20250107/1703354729273624061637805582.shtml. [2] 《人形机器人创新发展指导意见》[EB/OL]. https://www.miit.gov.cn/jgsj/kjs/wjfb/art/2023/art_50316f76a9b1454b898c7bb2a5846b79.html. [3] 《关于推动未来产业创新发展的实施意见》[EB/OL]. https://www.miit.gov.cn/zwgk/zcwj/wjfb/yj/art/2024/art_ad15b0f08a714fd8888c0e31468b8c54.html. [4] 吴春, 王超, 郑露华, 等. 基于锁相环型扩张状态观测器的双惯量弹性伺服系统机械谐振抑制方法[J]. 电工技术学报, 2024, 39(18): 5680-5691. Wu Chun, Wang Chao, Zheng Luhua, et al.A mechanical resonance suppression strategy for two-inertia elastic servo systems based on a phase locked loop-type extended state observe[J]. Transactions of China Electrotechnical Society, 2024, 39(18): 5680-5691. [5] Wang Can, Zhuang Yongquan, Yang Jinling, et al.Characteristic analysis and control loop design of transmission torque and jerk for flexible joint servo systems[J]. IEEE Transactions on Power Electronics, 2024, 39(7): 8528-8539. [6] Wolf S, Feenders J E.Modeling and benchmarking energy efficiency of Variable Stiffness Actuators on the example of the DLR FS[J][C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea (South), 2016: 529-536. [7] Paine N, Oh S, Sentis L.Design and control con-siderations for high-performance series elastic actuators[J]. IEEE/ASME Transactions on Mechatro-nics, 2014, 19(3): 1080-1091. [8] Seok S, Wang A, Otten D, et al.Actuator design for high force proprioceptive control in fast legged locomotion[C]//2012 IEEE/RSJ International Con-ference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 2012: 1970-1975. [9] Wensing P M, Wang A, Seok S, et al.Proprioceptive actuator design in the MIT cheetah: impact mitigation and high-bandwidth physical interaction for dynamic legged robots[J]. IEEE Transactions on Robotics, 2017, 33(3): 509-522. [10] 李佩颖, 夏加宽, 万成超. 基于动态转矩反馈的机械臂柔性系统振动抑制[J]. 电气传动, 2023, 53(4): 9-14. Li Peiying, Xia Jiakuan, Wan Chengchao.Vibration suppression of flexible manipulator system based on dynamic torque feedback[J]. Electric Drive, 2023, 53(4): 9-14. [11] Keennon M, Klingebiel K, Won H. Development of the nano hummingbird: a tailless flapping wing micro air vehicle[C]//50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee, 2012: AIAA2012-588. [12] de Croon G C H E, Perçin M, Remes B D W, et al. The DelFly[M]. Dordrecht: Springer Netherlands, 2016. [13] Campolo D, Azhar M, Lau G K, et al.Can DC motors directly drive flapping wings at high frequency and large wing strokes?[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(1): 109-120. [14] Tu Zhan, Fei Fan, Deng Xinyan.Bio-inspired rapid escape and tight body flip on an at-scale flapping wing hummingbird robot via reinforcement learning[J]. IEEE Transactions on Robotics, 2021, 37(5): 1742-1751. [15] Tu Zhan, Fei Fan, Zhang Jian, et al.An at-scale tailless flapping-wing hummingbird robot. I. design, optimization, and experimental validation[J]. IEEE Transactions on Robotics, 2020, 36(5): 1511-1525. [16] Baek S S, Ma K Y, Fearing R S.Efficient resonant drive of flapping-wing robots[C]//2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St Louis, MO, USA, 2009: 2854-2860. [17] Tu Zhan, Fei Fan, Deng Xinyan.Untethered flight of an at-scale dual-motor hummingbird robot with bio-inspired decoupled wings[J]. IEEE Robotics and Automation Letters, 2020, 5(3): 4194-4201. [18] Hutter M, Gehring C, Bloesch M, et al.STARLETH A compliant quadrupedal robot for fast, efficient, and versatile locomotion[M]. Adaptive Mobile Robotics, Baltimore: World Scientific Pub Co, 2012: 483-490. [19] Hutter M, Remy C D, Hoepflinger M A, et al.ScarlETH: Design and control of a planar running robot[C]//2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 2011: 562-567. [20] Hutter M, Gehring C, Lauber A, et al.ANYmal-toward legged robots for harsh environments[J]. Advanced Robotics, 2017, 31(17): 918-931. [21] Hutter M, Gehring C, Jud D, et al.ANYmal-a highly mobile and dynamic quadrupedal robot[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea (South), 2016: 38-44. [22] Pratt J E, Krupp B T.Series elastic actuators for legged robots[C]//Unmanned Ground Vehicle Tech-nology VI, Orlando, FL, 2004: 135-144. [23] Tsagarakis N G, Sardellitti I, Caldwell D G.A new variable stiffness actuator (CompAct-VSA): Design and modelling[C]//2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 2011: 378-383. [24] Wolf S, Eiberger O, Hirzinger G.The DLR FSJ: energy based design of a variable stiffness joint[C]//2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 2011: 5082-5089. [25] Englsberger J, Werner A, Ott C, et al.Overview of the torque-controlled humanoid robot TORO[C]//2014 IEEE-RAS International Conference on Humanoid Robots, Madrid, Spain, 2014: 916-923. [26] Negrello F, Garabini M, Catalano M G, et al.A modular compliant actuator for emerging high performance and fall-resilient humanoids[C]//2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), Seoul, Korea (South), 2015: 414-420. [27] Tsagarakis N G, Morfey S, Medrano Cerda G, et al.COMpliant huMANoid COMAN: optimal joint stiffness tuning for modal frequency control[C]//2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 2013: 673-678. [28] Kashiri N, Baccelliere L, Muratore L, et al.CENTAURO: a hybrid locomotion and high power resilient manipulation platform[J]. IEEE Robotics and Automation Letters, 2019, 4(2): 1595-1602. [29] Seok S, Wang A, Chuah M Y, et al.Design principles for highly efficient quadrupeds and implementation on the MIT Cheetah robot[C]//2013 IEEE Inter-national Conference on Robotics and Automation, Karlsruhe, Germany, 2013: 3307-3312. [30] Kalouche S.Design for 3d agility and virtual compliance using proprioceptive force control in dynamic legged robots[D]. Pittsburgh PA, USA: Carnegie Mellon University, 2016. [31] Zhang Xiaoguang.Application of proprioception quasi-direct drive actuators on dynamic robotic systems[D]. Los Angeles, CA, USA: University of California, Los Angeles, 2019. [32] Seok S, Wang A, Chuah M Y, et al.Design principles for energy-efficient legged locomotion and imple-mentation on the MIT cheetah robot[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(3): 1117-1129. [33] Gim K G, Kim J, Yamane K.Design and fabrication of a bipedal robot using serial-parallel hybrid leg mechanism[C]//2018 IEEE/RSJ International Con-ference on Intelligent Robots and Systems (IROS), Madrid, Spain, 2018: 5095-5100. [34] Hyun D J, Seok S, Lee J, et al.High speed trot-running: implementation of a hierarchical controller using proprioceptive impedance control on the MIT cheetah[J]. International Journal of Robotics Research, 2014, 33(11): 1417-1445. [35] Farve N N.Design of a low-mass high-torque brushless motor for application in quadruped robotics[D]. Massachusetts: Massachusetts Institute of Technology, 2012. [36] Park H W, Kim S.Quadrupedal galloping control for a wide range of speed via vertical impulse scaling[J]. Bioinspiration & Biomimetics, 2015, 10(2): 025003. [37] Bledt G, Powell M J, Katz B, et al.MIT cheetah 3: design and control of a robust, dynamic quadruped robot[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 2018: 2245-2252. [38] Katz B G.A low cost modular actuator for dynamic robots[D]. Massachusetts: Massachusetts Institute of Technology, 2018. [39] Zhu T.Design of a highly dynamic humanoid robot[D]. Los Angeles, CA, USA: University of California, Los Angeles, 2023. [40] Sensinger J W, Clark S D, Schorsch J F.Exterior vs. interior rotors in robotic brushless motors[C]//2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 2011: 2764-2770. [41] 乔路宽, 张炳义, 李岩, 等. 基于改进粒子群优化算法的外转子永磁同步电机的多目标优化设计[J]. 电机与控制应用, 2023, 50(3): 81-87, 94. Qiao Lukuan, Zhang Bingyi, Li Yan, et al.Multi-objective optimization design of external rotor permanent magnet synchronous motor based on improved particle swarm optimization algorithm[J]. Electric Machines & Control Application, 2023, 50(3): 81-87, 94. [42] 鲍晓华, 刘佶炜, 孙跃, 等. 低速大转矩永磁直驱电机研究综述与展望[J]. 电工技术学报, 2019, 34(6): 1148-1160. Bao Xiaohua, Liu Jiwei, Sun Yue, et al.Review and prospect of low-speed high-torque permanent magnet machines[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1148-1160. [43] De A, Koditschek D E.The penn jerboa: a platform for exploring parallel composition of templates[J]. ArXiv e-Prints, 2015: 1502.05347. [44] Kenneally G, De A, Koditschek D E.Design principles for a family of direct-drive legged robots[J]. IEEE Robotics and Automation Letters, 2016, 1(2): 900-907. [45] Kalouche S.GOAT: a legged robot with 3D agility and virtual compliance[C]//2017 IEEE/RSJ Inter-national Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 2017: 4110-4117. [46] Katz B, Di Carlo J, Kim S.Mini cheetah: a platform for pushing the limits of dynamic quadruped con-trol[C]//2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 2019: 6295-6301. [47] Di Carlo J, Wensing P M, Katz B, et al.Dynamic locomotion in the MIT cheetah 3 through convex model-predictive control[C]//2018 IEEE/RSJ Inter-national Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 2018: 1-9. [48] Fahmi S, Mastalli C, Focchi M, et al.Passive whole-body control for quadruped robots: experimental validation over challenging terrain[J]. IEEE Robotics and Automation Letters, 2019, 4(3): 2553-2560. [49] Kau N, Schultz A, Ferrante N, et al.Stanford doggo: an open-source, quasi-direct-drive quadruped[C]//2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 2019: 6309-6315. [50] Hooks J, Ahn M S, Yu J, et al.ALPHRED: a multi-modal operations quadruped robot for package delivery applications[J]. IEEE Robotics and Auto-mation Letters, 2020, 5(4): 5409-5416. [51] Chignoli M, Kim D, Stanger-Jones E, et al.The MIT humanoid robot: design, motion planning, and control for acrobatic behaviors[C]//2020 IEEE-RAS 20th International Conference on Humanoid Robots (Humanoids), Munich, Germany, 2021: 1-8. [52] SaLoutos A, Stanger-Jones E, Ding Yanran, et al. Design and development of the MIT humanoid: a dynamic and robust research platform[C]//2023 IEEE-RAS 22nd International Conference on Humanoid Robots (Humanoids), Austin, TX, USA, 2023: 1-8. [53] Hao Zhuo, Ma Yangyang, Wang Pengyu, et al.A review of axial-flux permanent-magnet motors: topo-logical structures, design, optimization and control techniques[J]. Machines, 2022, 10(12): 1178. [54] 赵纪龙, 逯卓林, 韩青峰, 等. 轴向磁通永磁电机系统及关键技术前沿发展综述[J]. 中国电机工程学报, 2022, 42(7): 2744-2765. Zhao Jilong, Lu Zhuolin, Han Qingfeng, et al.An overview on development of axial flux permanent magnet motor system and the key technology[J]. Proceedings of the CSEE, 2022, 42(7): 2744-2765. [55] 于丰源, 陈昊, 王星, 等. 不同定子绕组结构双定子轴向磁通开关磁阻电机性能对比研究[J]. 电工技术学报, 2024, 39(24): 7728-7741. Yu Fengyuan, Chen Hao, Wang Xing, et al.Com-parative study on the double stator axial flux switched reluctance motors with different winding structures[J]. Transactions of China Electrotechnical Society, 2024, 39(24): 7728-7741. [56] Shin D Y, Jung M J, Lee K B, et al.A study on the improvement of torque density of an axial slot-less flux permanent magnet synchronous motor for collaborative robot[J]. Energies, 2022, 15(9): 3464. [57] 刘顺, 刘霄, 华永通. 一种轴向磁通内置行星减速机的轮毂电机: CN218301139U[P].2023-01-13. [58] Praveen R P, Ravichandran M H, Sadasivan Achari V T, et al. A novel slotless halbach-array permanent-magnet brushless DC motor for spacecraft appli-cations[J]. IEEE Transactions on Industrial Elec-tronics, 2012, 59(9): 3553-3560. [59] 倪守辉, 王善铭, 黄子果. 大功率空心杯异步电机的参数计算与试验验证[J]. 电工技术学报, 2016, 31(15): 1-7. Ni Shouhui, Wang Shanming, Huang Ziguo.Para-meter calculation and experimental verification of high-power drag-cup induction machines[J]. Transa-ctions of China Electrotechnical Society, 2016, 31(15): 1-7. [60] Della Santina C, Piazza C, Grioli G, et al.Toward dexterous manipulation with augmented adaptive synergies: the Pisa/IIT SoftHand 2[J]. IEEE Transa-ctions on Robotics, 2018, 34(5): 1141-1156. [61] Belter J T, Segil J L, Dollar A M, et al.Mechanical design and performance specifications of anthropo-morphic prosthetic hands: a review[J]. Journal of Rehabilitation Research and Development, 2013, 50(5): 599-618. [62] Kim U, Jung D, Jeong H, et al.Integrated linkage-driven dexterous anthropomorphic robotic hand[J]. Nature Communications, 2021, 12(1): 7177. [63] 王鹏飞. 空心杯线圈绕线机机构设计及控制[D]. 哈尔滨: 哈尔滨工程大学, 2016. Wang Pengfei.Mechanism design and control of hollow cup coil winding machine[D]. Harbin: Harbin Engineering University, 2016. [64] 袁永杰, 郑文鹏, 尤莹, 等. 空心杯电机永磁体不同拓扑结构的比较分析[J]. 微特电机, 2022, 50(10): 20-23. Yuan Yongjie, Zheng Wenpeng, You Ying, et al.Comparative analysis of different topologies of permanent magnets for coreless motor[J]. Small & Special Electrical Machines, 2022, 50(10): 20-23. [65] 王治会. 基于辐向环充磁的高转矩密度永磁力矩电机设计与分析[D]. 沈阳: 沈阳工业大学, 2021. Wang Zhihui.Design and analysis of high torque density permanent magnet torque motor based on radial ring magnetization[D]. Shenyang: Shenyang University of Technology, 2021. [66] 何伟严, 马吉恩, 王宏涛, 等. 机器人关节电机转矩动态特性研究[J]. 电机与控制学报, 2023, 27(12): 12-20. He Weiyan, Ma Jien, Wang Hongtao, et al.Dynamic characteristics of robot joint motor torque[J]. Electric Machines and Control, 2023, 27(12): 12-20. [67] Xu Yiyang, Zhan Hanlin, Yang Hui, et al.Coupled modeling and design principles of limited-angle vibration motors for high-frequency reciprocating rotation[J]. IEEE Transactions on Industrial Elec-tronics, 2024, 71(10): 12803-12813. [68] Angle M G, Lang J H, Kirtley J L, et al.Optimization of surface-mount permanent magnet synchronous machines for low duty-cycle, high-torque appli-cations[C]//2017 IEEE International Electric Machines and Drives Conference (IEMDC), Miami, FL, USA, 2017: 1-6. [69] Shin Y H, Hong S, Woo S, et al.Design of KAIST HOUND, a quadruped robot platform for fast and efficient locomotion with mixed-integer nonlinear optimization of a gear train[C]//2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 2022: 6614-6620. [70] Angle M G, Lang J H, Kirtley J L, et al.Modeling of surface permanent magnet motors with cogging and saturation effects included[J]. IEEE Transactions on Energy Conversion, 2018, 33(4): 1604-1613. [71] Liu Guohai, Zeng Yu, Zhao Wenxiang, et al.Permanent magnet shape using analytical feedback function for torque improvement[J]. IEEE Transa-ctions on Industrial Electronics, 2018, 65(6): 4619-4630. [72] 刘佶炜, 狄冲, 李仕豪, 等. 基于不同绕组形式双定子低速大转矩永磁直驱电机转矩脉动的分析与抑制[J]. 电工技术学报, 2024, 39(12): 3646-3657. Liu Jiwei, Di Chong, Li Shihao, et al.Analysis and mitigation of torque ripple of a dual-stator low-speed high-torque permanent magnet machine with different winding forms[J]. Transactions of China Electro-technical Society, 2024, 39(12): 3646-3657. [73] Wu Leilei, Qu Ronghai.A novel dual-stator vernier permanent magnet machine with improved power factor[J]. IEEE Transactions on Industry Applications, 2022, 58(3): 3486-3496. [74] Du Z S, Lipo T A.Design of an improved dual-stator ferrite magnet vernier machine to replace an industrial rare-earth IPM machine[J]. IEEE Transactions on Energy Conversion, 2019, 34(4): 2062-2069. [75] Huang Jiahui, Fu Weinong, Niu Shuangxia, et al.Analysis of a complementary dual-stator vernier machine with reduced non-working harmonics for low-speed direct-drive applications[J]. IEEE Transa-ctions on Energy Conversion, 2024, 39(1): 711-721. [76] Parsa L.On advantages of multi-phase machines[C]//31st Annual Conference of IEEE Industrial Elec-tronics Society, Raleigh, NC, USA, 2006: 1-6. [77] 孙玉华, 赵文祥, 吉敬华, 等. 高转矩性能多相组永磁电机及其关键技术综述[J]. 电工技术学报, 2023, 38(6): 1403-1420. Sun Yuhua, Zhao Wenxiang, Ji Jinghua, et al.Overview of multi-star multi-phase permanent magnet machines with high torque performance and its key technologies[J]. Transactions of China Electro-technical Society, 2023, 38(6): 1403-1420. [78] 张进. 机器人磁齿轮关节电机关键技术研究[D]. 无锡: 江南大学, 2021. Zhang Jin.Research on key technologies of robot magnetic gear joint motor[D]. Wuxi: Jiangnan University, 2021. [79] Islam M S, Mir S, Sebastian T, et al.Design considerations of sinusoidally excited permanent-magnet machines for low-torque-ripple applications[J]. IEEE Transactions on Industry Applications, 2005, 41(4): 955-962. [80] Borghi C A, Casadei D, Cristofolini A, et al.Minimizing torque ripple in permanent magnet synchronous motors with polymer-bonded magnets[J]. IEEE Transactions on Magnetics, 2002, 38(2): 1371-1377. [81] 莫为, 莫会成, 顾苗苗, 等. 一种四足机器人伺服电机设计与优化[J]. 微电机, 2019, 52(10): 1-6. Mo Wei, Mo Huicheng, Gu Miaomiao, et al.A design and optimization of a quadruped robot servo motor[J]. Micromotors, 2019, 52(10): 1-6. [82] 李立毅, 张江鹏, 闫海媛, 等. 高过载永磁同步电机的电磁特性[J]. 电工技术学报, 2017, 32(2): 125-134. Li Liyi, Zhang Jiangpeng, Yan Haiyuan, et al.Electromagnetic characteristics on high overload permanent magnet synchronous motor[J]. Transa-ctions of China Electrotechnical Society, 2017, 32(2): 125-134. [83] 李立毅, 张江鹏, 赵国平, 等. 考虑极限热负荷下高过载永磁同步电机的研究[J]. 中国电机工程学报, 2016, 36(3): 845-852. Li Liyi, Zhang Jiangpeng, Zhao Guoping, et al.Research on the high overload permanent magnet synchronous motor considering extreme thermal load[J]. Proceedings of the CSEE, 2016, 36(3): 845-852. [84] 张江鹏. 具有高过载能力永磁同步电机的研究[D]. 哈尔滨: 哈尔滨工业大学, 2011. Zhang Jiangpeng.Research on permanent magnet synchronous motor with high overload capacity[D]. Harbin: Harbin Institute of Technology, 2011. [85] 刘毓希, 李立毅, 曹继伟, 等. 短时高过载永磁同步电机电磁热研究[J]. 电工技术学报, 2019, 34(11): 2296-2305. Liu Yuxi, Li Liyi, Cao Jiwei, et al.Electromagnetic thermal analysis for short-term high-overload per-manent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2019, 34(11): 2296-2305. [86] Zhang Wu, Yu Zhangguo, Chen Xuechao, et al.The magneto-thermal analysis of a high torque density joint motor for humanoid robots[C]//2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids), Beijing, China, 2018: 112-117. [87] 陈影. 关节电机过载温度场及线性传感磁场优化的研究[D]. 哈尔滨: 哈尔滨工业大学, 2010. Chen Ying.Research on optimization of overload temperature field and linear sensing magnetic field of joint motor[D]. Harbin: Harbin Institute of Tech-nology, 2010. [88] Calvo M R, Ugalde F R.Comparative efficiency study of two proposed designs tested in water and air cooling conditions for a high power humanoid robot hollow joint[C]//2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI), San Carlos, Costa Rica, 2018: 1-9. [89] Nicholson J, Jasper J, Kourchians A, et al.LLAMA: design and control of an omnidirectional human mission scale quadrupedal robot[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 2020: 3951-3958. [90] 任秦龙, 周科翔, 叶柏青, 等. 一种机器人关节轻质射流冷却装置: CN116131526A[P].2023-05-16. [91] Kaminaga H, Ko T, Yorita S, et al.Enhancement of mechanical strength, computational power, and heat management for fieldwork humanoid robots[C]//2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), Cancun, Mexico, 2016: 786-793. [92] Zhu T, Hooks J, Hong D.Design, modeling, and analysis of a liquid cooled proprioceptive actuator for legged robots[C]//2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Hong Kong, China, 2019: 36-43. [93] Lee K, Hong S, Oh J H.Development of a lightweight and high-efficiency compact cycloidal reducer for legged robots[J]. International Journal of Precision Engineering and Manufacturing, 2020, 21(3): 415-425. [94] 陈朋朋. 一种应用于双足机器人的伺服关节电机: CN216229480U[P].2022-04-08. [95] Meng Fei, Huang Qiang, Yu Zhangguo, et al.Explosive electric actuator and control for legged robots[J]. Engineering, 2022, 12: 39-47. [96] Zhang Xutao, Qiu Shuheng, Zhang Haotian, et al.Experimental research on transient thermal perfor-mance of solid-liquid phase change material filled motor housing[C]//2023 IEEE 18th Conference on Industrial Electronics and Applications (ICIEA), Ningbo, China, 2023: 342-345. [97] 莫帅, 李旭, 杨振宁, 等. 冲击载荷下机器人关节系统动态特性研究[J]. 机械传动, 2022, 46(8): 1-7. Mo Shuai, Li Xu, Yang Zhenning, et al.Research on dynamic characteristics of robot joint system under impact load[J]. Journal of Mechanical Transmission, 2022, 46(8): 1-7. [98] 李翁衡, 祝长生. 主动电磁轴承-柔性转子系统振动位移的高精度跟踪和估计方法[J]. 电工技术学报, 2023, 38(12): 3151-3164. Li Wengheng, Zhu Changsheng.High precision tracking and estimation method for vibration dis-placement of active magnetic bearings-flexible rotor system[J]. Transactions of China Electrotechnical Society, 2023, 38(12): 3151-3164. [99] Ryu J Y, Hwang S W, Chin J W, et al.Mathematical modeling of fast and accurate coupled electromagnetic-thermal analysis[J]. IEEE Transactions on Industry Applications, 2021, 57(5): 4636-4645. [100] 赵静, 何威, 刘向东, 等. 球形电动机及其研究发展综述[J]. 中国电机工程学报, 2024, 44(2): 737-755. Zhao Jing, He Wei, Liu Xiangdong, et al.An overview on developments and research of spherical motors[J]. Proceedings of the CSEE, 2024, 44(2): 737-755. [101] 程树康, 崔淑梅, 刘宝廷, 等. 正交圆柱结构双气隙共磁钢三自由度电动机初探[J]. 中国电机工程学报, 1997, 17(5): 294-298. Cheng Shukang, Cui Shumei, Liu Baoting, et al.Preliminary research on orthogonal cylinder structure double air gap common permanent magnet three freedom motor[J]. Proceedings of the CSEE, 1997, 17(5): 294-298. [102] Yeh Y H, Hsieh M F, Dorrell D G.Different arrangements for dual-rotor dual-output radial-flux motors[C]//2010 IEEE Energy Conversion Congress and Exposition, Atlanta, GA, USA, 2010: 2956-2962. [103] Groenhuis V, Rolff G, Bosman K, et al.Multi-axis electric stepper motor[J]. IEEE Robotics and Auto-mation Letters, 2021, 6(4): 7201-7208. [104] Zhou Sili, Li Guoli, Wang Qunjing, et al.Geometrical equivalence principle based modeling and analysis for monolayer halbach array spherical motor with cubic permanent magnets[J]. IEEE Transactions on Energy Conversion, 2021, 36(4): 3241-3250. [105] Hekmati P, Yazdanpanah R, Mirsalim M, et al.Radial-flux permanent-magnet limited-angle torque motors[J]. IEEE Transactions on Industrial Elec-tronics, 2017, 64(3): 1884-1892. [106] Perera N, Yu S, Marew D, et al.StaccaToe: A single-leg robot that mimics the human leg and toe[C]//2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2024: 9058-9065. [107] 房晓彤, 马青, 胡晶. 高磁导率软磁复合材料研究进展[J]. 广州化工, 2024, 52(8): 11-14, 25. Fang Xiaotong, Ma Qing, Hu Jing.Research progress of soft magnetic composites with high permeability[J]. Guangzhou Chemical Industry, 2024, 52(8): 11-14, 25. [108] 王心安, 廖思宇, 程本培. 重塑“粘结磁”的概念: 各向异性稀土铁氮(钐铁氮钕铁氮)永磁材料产业化新进展[J]. 稀土信息, 2024(6): 16-20. Wang Xin’an, Liao Siyu, Cheng Benpei.Reshaping the concept of “bonding magnetism”: new progress in industrialization of anisotropic rare earth Fe-N (Sm-Fe-N-Nd-Fe-N) permanent magnet materials[J]. Rare Earth Information, 2024(6): 16-20. [109] Naseer M U, Kallaste A, Asad B, et al.A review on additive manufacturing possibilities for electrical machines[J]. Energies, 2021, 14(7): 1940. [110] Goll D, Schuller D, Martinek G, et al.Additive manufacturing of soft magnetic materials and components[J]. Additive Manufacturing, 2019, 27: 428-439. [111] Tseng G M, Jhong K J, Tsai M C, et al.Application of additive manufacturing for low torque ripple of 6/4 switched reluctance motor[C]//2016 19th Inter-national Conference on Electrical Machines and Systems (ICEMS), Chiba, Japan, 2016: 1-4. [112] Simpson N, North D J, Collins S M, et al.Additive manufacturing of shaped profile windings for minimal AC loss in electrical machines[J]. IEEE Transactions on Industry Applications, 2020, 56(3): 2510-2519. [113] Pham T, Kwon P, Foster S.Additive manufacturing and topology optimization of magnetic materials for electrical machines: a review[J]. Energies, 2021, 14(2): 283. [114] Ibrahim M, Bernier F, Lamarre J M.Novel multi-layer design and additive manufacturing fabrication of a high power density and efficiency interior PM motor[C]//2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 2020: 3601-3606. |
|
|
|