|
|
Dynamic Current Balancing Method for Parallel SiC MOSFETs Based on Direct Source Interconnection Strategy |
Chen Haobin1, Yan Haidong1, Ma Kai2, Guo Qing1, Sheng Kuang1 |
1. School of Electrical Engineering Zhejiang University Hangzhou 310000 China; 2. Guangdong Provincial Key Laboratory of Power Equipment Reliability Guangdong Electric Power Science Academe Guangzhou 510080 China |
|
|
Abstract Driven by the increasing demand for high power, paralleling SiC MOSFETs emerge as a cost-effective and efficient solution to boost current capacity. Multichip SiC power modules with Kelvin-source connection are popular in applications requiring large capacity and high switching frequency, yet dynamic current imbalance persists as a prevalent challenge. As a result, the paralleled SiC MOSFET chips experience unbalanced losses and junction temperatures. In extreme cases, thermal runaway can occur, resulting in chip failure. Existing dynamic current balancing methods will make the circuit more complex, difficult to design and implement, or increase costs. This paper proposes a method using direct source interconnection (DSI) between the source terminals of paralleled SiC MOSFET chips. By adjusting the DSI parameters, effective current balance can be readily attained. Compared to active methods, this method does not require complex sensors or processing circuits and remains fully compatible with traditional manufacturing techniques. Unlike conventional passive methods, it does not require additional passive components such as resistors, inductors, or capacitors, simplifying implementation and reducing costs. Moreover, it avoids the need for changes to the DBC layout and does not demand complex structural design or precise calculations. The mechanism of dynamic current imbalance in paralleled SiC MOSFETs is derived through circuit modeling and mathematical analysis, considering both cases with and without the DSI method. The mechanism reveals the current coupling mechanism between the power loop and the drive loop of paralleled SiC MOSFETs under unbalanced power source parasitic inductance. Additionally, the differences in the drive loop and dynamic current caused by this coupling are obtained. In the derived mechanism, the key parameters affecting dynamic current imbalance are identified. The mechanism of action of the DSI dynamic current balancing method is explained. The DSI method effectively mitigates the current coupling between the power loop and the drive loop, thereby reducing differences in the drive loop and dynamic current. This results in a significant improvement in dynamic current imbalance. Furthermore, the method retains the benefits of the Kelvin-source connection, enhancing switching speed and reducing switching losses for the chips. Simulations and experiments have verified the mechanism of dynamic current imbalance and the effectiveness of the proposed dynamic current balancing method. The results show that the proposed DSI method reduces the dynamic current difference and switching loss difference of paralleled SiC MOSFETs by at least 50%. Additionally, the method preserves the high efficiency of the power module, which features a Kelvin-source connection. Consequently, it provides the dual advantages of balanced current sharing and efficiency optimization. Finally, the effectiveness of the DSI method is validated in the module with more parallel chips. The results show that in multichip parallel applications, the DSI method demonstrates significant performance advantages compared to the Kelvin-source connection. Moreover, the DSI method requires only a simple wire bonding process, without altering the power module layout or adding extra pins. Therefore, in high-power-density and high-frequency applications, the DSI method meets the dynamic current sharing requirements of multichip power modules while reducing implementation complexity and costs.
|
Received: 22 January 2025
|
|
|
|
|
[1] 谭亚雄, 张梦洋, 刘元, 等. 一种连续函数描述的高精度SiC MOSFET模型[J]. 电工技术学报, 2024, 39(18): 5719-5731. Tan Yaxiong, Zhang Mengyang, Liu Yuan, et al.A high-precision SiC MOSFET model with continuous function description[J]. Transactions of China Elec- trotechnical Society, 2024, 39(18): 5719-5731. [2] 盛况, 任娜, 徐弘毅. 碳化硅功率器件技术综述与展望[J]. 中国电机工程学报, 2020, 40(6): 1741-1753. Sheng Kuang, Ren Na, Xu Hongyi.A recent review on silicon carbide power devices technologies[J]. Proceedings of the CSEE, 2020, 40(6): 1741-1753. [3] 邹铭锐, 曾正, 孙鹏, 等. 基于变电阻驱动的SiC器件开关轨迹协同调控[J]. 电工技术学报, 2023, 38(16): 4286-4300. Zou Mingrui, Zeng Zheng, Sun Peng, et al.Coordinated switching trajectory regulation of SiC device using variable resistance gate driver[J]. Transactions of China Electrotechnical Society, 2023, 38(16): 4286-4300. [4] 丁四宝, 王盼宝, 王卫, 等. SiC/Si混合开关时间延迟及其信号调制方法[J]. 电工技术学报, 2025, 40(4): 1129-1144. Ding Sibao, Wang Panbao, Wang Wei, et al.Analysis of SiC/Si HyS loss characteristics and its driving signal modulation circuit[J]. Transactions of China Electrotechnical Society, 2025, 40(4): 1129-1144. [5] 徐浩东, 罗嗣勇, 毕闯, 等. 基于SiC MOSFET同步Buck DC-DC变换器的宽频混合EMI滤波器设计[J]. 电工技术学报, 2024, 39(10): 3060-3069. Xu Haodong, Luo Siyong, Bi Chuang, et al.Design of broadband hybrid EMI filter in synchronous Buck DC-DC converter with SiC MOSFETs[J]. Transa- ctions of China Electrotechnical Society, 2024, 39(10): 3060-3069. [6] 宛新春, 陈其工, 杨锦涛, 等. 基于栅极和漏极电压检测的SiC MOSFET短路保护电路研究[J]. 电工技术学报, 2025, 40(4): 1145-1155, 1168. Wan Xinchun, Chen Qigong, Yang Jintao, et al.Research on SiC MOSFET short-circuit protection based on gate and drain voltage detection[J]. Transa- ctions of China Electrotechnical Society, 2025, 40(4): 1145-1155, 1168. [7] 王议锋, 车超昌, 陈博, 等. 基于SiC器件的高压宽范围直流辅助电源[J]. 电工技术学报, 2025, 40(3): 786-799. Wang Yifeng, Che Chaochang, Chen Bo, et al.high voltage wide range DC auxiliary power supply based on SiC devices[J]. Transactions of China Electro- technical Society, 2025, 40(3): 786-799. [8] 肖标, 郭祺, 涂春鸣, 等. 面向开关时序与驱动电压自主协同调控的SiC/Si混合开关驱动电路[J]. 电工技术学报, 2025, 40(4): 1117-1128. Xiao Biao, Guo Qi, Tu Chunming, et al.SiC/Si hybrid switch drive circuit with autonomous and coordinated control of switching sequences and driving voltages[J]. Transactions of China Electrotechnical Society, 2025, 40(4): 1117-1128. [9] 於少林, 张兴, 王佳宁, 等. 分立器件并联型叠层母排均流分析及优化设计[J]. 电工技术学报, 2023, 38(8): 2086-2099. Yu Shaolin, Zhang Xing, Wang Jianing, et al.The current balance analysis and optimization design of the laminated busbar with discrete devices in parallel[J]. Transactions of China Electrotechnical Society, 2023, 38(8): 2086-2099. [10] 李东润, 宁圃奇, 康玉慧, 等. 采用大芯片的高功率密度SiC功率模块设计[J]. 电源学报, 2024, 22(3): 93-99. Li Dongrun, Ning Puqi, Kang Yuhui, et al.Design of high power density SiC power module with large chips[J]. Journal of Power Supply, 2024, 22(3): 93-99. [11] Husain I, Ozpineci B, Islam M S, et al.Electric drive technology trends, challenges, and opportunities for future electric vehicles[J]. Proceedings of the IEEE, 2021, 109(6): 1039-1059. [12] Reimers J, Dorn-Gomba L, Mak C, et al.Automotive traction inverters: current status and future trends[J]. IEEE Transactions on Vehicular Technology, 2019, 68(4): 3337-3350. [13] Li Helong, Zhao Shuang, Wang Xiongfei, et al.Parallel connection of silicon carbide MOSFETs: challenges, mechanism, and solutions[J]. IEEE Transa- ctions on Power Electronics, 2023, 38(8): 9731-9749. [14] 张少昆, 孙微, 范涛, 等. 基于分立器件并联的高功率密度碳化硅电机控制器研究[J]. 电工技术学报, 2023, 38(22): 5999-6014. Zhang Shaokun, Sun Wei, Fan Tao, et al.Research on high power density silicon carbide motor controller based on parallel connection of discrete devices[J]. Transactions of China Electrotechnical Society, 2023, 38(22): 5999-6014. [15] 王来利, 赵成, 张彤宇, 等. 碳化硅功率模块封装技术综述[J]. 电工技术学报, 2023, 38(18): 4947-4962. Wang Laili, Zhao Cheng, Zhang Tongyu, et al.Review of packaging technology for silicon carbide power modules[J]. Transactions of China Electro- technical Society, 2023, 38(18): 4947-4962. [16] 张缙, 刘智, 刘意, 等. 基于智能算法的双面散热SiC功率模块多目标优化设计[J]. 电工技术学报, 2023, 38(20): 5515-5529. Zhang Jin, Liu Zhi, Liu Yi, et al.Research on multi-objective optimization design of double-sided cooling SiC power module based on intelligent algorithm[J]. Transactions of China Electrotechnical Society, 2023, 38(20): 5515-5529. [17] Zhang Boyi, Wang Ruxi, Barbosa P, et al.Common source inductance compensation technique for dynamic current balancing in SiC MOSFETs parallel operations[C]//2023 IEEE Applied Power Electronics Conference and Exposition (APEC), Orlando, FL, USA, 2023: 358-365. [18] Zhu Ye, Li Han, Luo Cheng, et al.Influence of paralleled SiC MOSFET on turn-off gate voltage oscillation[C]//2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 2020: 683-689. [19] Zhao Cheng, Wang Laili, Zhang Fan, et al.A method to balance dynamic current of paralleled SiC MOSFETs with kelvin connection based on response surface model and nonlinear optimization[J]. IEEE Transactions on Power Electronics, 2021, 36(2): 2068-2079. [20] 陈宇, 周宇, 罗皓泽, 等. 计及芯片导通压降温变效应的功率模块三维温度场解析建模方法[J]. 电工技术学报, 2021, 36(12): 2459-2470. Chen Yu, Zhou Yu, Luo Haoze, et al.Analytical 3D temperature field model for power module con- sidering temperature effect of semiconductor voltage drop[J]. Transactions of China Electrotechnical Society, 2021, 36(12): 2459-2470. [21] Tang Lei, Jiang Huaping, Liao Ruijin, et al.Impact of the threshold dispersity evolution on the current sharing of parallel SiC MOSFETs[J]. IEEE Transa- ctions on Power Electronics, 2024, 39(5): 6312-6326. [22] Neira S, Mathieson R, Parker M, et al.Investigation into current sharing of parallel SiC MOSFET modules using a gate-driver with sub-nanosecond time-skew capability[C]//2023 25th European Conference on Power Electronics and Applications (EPE'23 ECCE Europe), Aalborg, Denmark, 2023: 1-8. [23] Li Helong, Munk-Nielsen S, Bęczkowski S, et al.Effects of auxiliary source connections in multichip power module[C]//2016 IEEE Applied Power Elec- tronics Conference and Exposition (APEC), Long Beach, CA, USA, 2016: 3101-3106. [24] Zhao Cheng, Wang Laili, Zhang Fan.Effect of asymmetric layout and unequal junction temperature on current sharing of paralleled SiC MOSFETs with kelvin-source connection[J]. IEEE Transactions on Power Electronics, 2020, 35(7): 7392-7404. [25] Lü Jianwei, Chen Cai, Liu Baihan, et al.A dynamic current balancing method for paralleled SiC MOSFETs using monolithic Si-RC snubber based on a dynamic current sharing model[J]. IEEE Transactions on Power Electronics, 2022, 37(11): 13368-13384. [26] Wen Yang, Yang Yuan, Gao Yong.Active gate driver for improving current sharing performance of paralleled high-power SiC MOSFET modules[J]. IEEE Transactions on Power Electronics, 2021, 36(2): 1491-1505. [27] He Yang, Wang Xun, Shao Shuai, et al.Active gate driver for dynamic current balancing of parallel- connected SiC MOSFETs[J]. IEEE Transactions on Power Electronics, 2023, 38(5): 6116-6127. [28] Du Liyang, Du Xia, Zhao Shuang, et al.Digital close-loop active gate driver for static and dynamic current sharing of paralleled SiC MOSFETs[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2024, 12(2): 1372-1384. [29] Gong Hongzhou, Wang Laili, Yang Junhui, et al.Effect of distributed decoupling capacitors in multi-chip SiC power modules on current sharing mechanism[C]//2024 IEEE 10th International Power Electronics and Motion Control Conference (IPEMC2024-ECCE Asia), Chengdu, China, 2024: 2619-2624. [30] Baker N, Iannuzzo F, Li Helong.Impact of Kelvin- source resistors on current sharing and failure detection in multichip power modules[C]//2018 20th European Conference on Power Electronics and Applications, Riga, Latvia, 2018: 1-7. [31] 曾正, 邵伟华, 胡博容, 等. 基于耦合电感的SiC MOSFET并联主动均流[J]. 中国电机工程学报, 2017, 37(7): 2068-2081. Zeng Zheng, Shao Weihua, Hu Borong, et al.Active current sharing of paralleled SiC MOSFETs by coupling inductors[J]. Proceedings of the CSEE, 2017, 37(7): 2068-2081. [32] Miao Zichen, Mao Yincan, Lu Guoquan, et al.Magnetic integration into a silicon carbide power module for current balancing[J]. IEEE Transactions on Power Electronics, 2019, 34(11): 11026-11035. [33] He Yang, Zhang Junming, Shao Shuai.Dynamic current balancing for paralleled SiC MOSFETs with circuit mismatches considering circulating current in drive circuit[J]. CPSS Transactions on Power Elec- tronics and Applications, 2024, 9(2): 219-229. [34] 邵伟华, 冉立, 曾正, 等. 基于优化对称布局的多芯片SiC模块动态均流[J]. 中国电机工程学报, 2018, 38(6): 1826-1836, 1920. Shao Weihua, Ran Li, Zeng Zheng, et al.Dynamic current sharing of multichip SiC module with optimal symmetric layout[J]. Proceedings of the CSEE, 2018, 38(6): 1826-1836, 1920. [35] Zeng Zheng, Zhang Xin, Li Xiaoling.Layout- dominated dynamic current imbalance in multichip power module: mechanism modeling and comparative evaluation[J]. IEEE Transactions on Power Elec- tronics, 2019, 34(11): 11199-11214. [36] Wang Miao, Luo Fang, Xu Longya.A double-end sourced wire-bonded multichip SiC MOSFET power module with improved dynamic current sharing[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017, 5(4): 1828-1836. [37] Bęczkowski S, Jørgensen A B, Li Helong, et al. Switching current imbalance mitigation in power modules with parallel connected SiC MOSFETs[C]//2017 19th European Conference on Power Electronics and Applications (EPE'17 ECCE Europe), Warsaw, Poland, 2017: P.1-P.8. [38] Cittanti D, Iannuzzo F, Hoene E, et al.Role of parasitic capacitances in power MOSFET turn-on switching speed limits: a SiC case study[C]//2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, USA, 2017: 1387-1394. |
|
|
|