[1] 杨超, 李东翰, 雷显帅, 等. 虚拟惯量控制对直驱风电机组载荷影响的分析及评估[J]. 电力系统自动化, 2024, 48(7): 258-266.
Yang Chao, Li Donghan, Lei Xianshuai, et al.Analysis and evaluation of impact of virtual inertia control on load of direct-drive wind turbine[J]. Automation of Electric Power Systems, 2024, 48(7): 258-266.
[2] 胡石阳, 刘国荣. 基于虚拟同步机的新能源并网智能控制研究[J]. 电气技术, 2022, 23(10): 10-17.
Hu Shiyang, Liu Guorong.Research on intelligent control of grid connected new energy based on virtual synchronous machine[J]. Electrical Engineering, 2022, 23(10): 10-17.
[3] 张冠锋, 杨俊友, 孙峰, 等. 基于虚拟惯量和频率下垂控制的双馈风电机组一次调频策略[J]. 电工技术学报, 2017, 32(22): 225-232.
Zhang Guanfeng, Yang Junyou, Sun Feng, et al.Primary frequency regulation strategy of DFIG based on virtual inertia and frequency droop control[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 225-232.
[4] 穆钢, 蔡婷婷, 严干贵, 等. 双馈风电机组参与持续调频的双向功率约束及其影响[J]. 电工技术学报, 2019, 34(8): 1750-1759.
Mu Gang, Cai Tingting, Yan Gangui, et al.Bidirectional power constraints and influence of doubly fed induction generator participating in continuous frequency regulation[J]. Transactions of China Electrotechnical Society, 2019, 34(8): 1750-1759.
[5] 江一航, 赵书强, 王慧, 等. 计及风电、调相机支撑特性的频率安全约束分布鲁棒机组组合调度方法[J]. 电工技术学报, 2025, 40(1): 80-95.
Jiang Yihang, Zhao Shuqiang, Wang Hui, et al.Distributionally robust frequency constrained unit commitment with frequency support of wind power and synchronous condenser[J]. Transactions of China Electrotechnical Society, 2025, 40(1): 80-95.
[6] 辛悦, 彭乔, 刘天琪, 等. 基于周期性最大功率点检测的风电机组功率备用控制方法[J]. 电力自动化设备, 2024, 44(2): 103-109, 116.
Xin Yue, Peng Qiao, Liu Tianqi, et al.Power reserve control method of wind turbine units based on periodic maximum power point measurement[J]. Electric Power Automation Equipment, 2024, 44(2): 103-109, 116.
[7] 黄晟, 凌吉莉, 魏娟, 等. 大规模风电机群服役质量调控方法研究综述[J]. 电工技术学报, 2025, 40(10): 3274-3300.
Huang Sheng, Ling Jili, Wei Juan, et al.A review of regulation method of service quality of large-scale wind farm[J]. Transactions of China Electrotechnical Society, 2025, 40(10): 3274-3300.
[8] 颜湘武, 宋子君, 崔森, 等. 基于变功率点跟踪和超级电容器储能协调控制的双馈风电机组一次调频策略[J]. 电工技术学报, 2020, 35(3): 530-541.
Yan Xiangwu, Song Zijun, Cui Sen, et al.Primary frequency regulation strategy of doubly-fed wind turbine based on variable power point tracking and supercapacitor energy storage[J]. Transactions of China Electrotechnical Society, 2020, 35(3): 530-541.
[9] 彭海涛, 何山, 袁至, 等. 基于改进转子转速和桨距角协调控制的变速风电机组一次调频策略[J]. 电力自动化设备, 2023, 43(9): 87-94.
Peng Haitao, He Shan, Yuan Zhi, et al.Primary frequency regulation strategy for variable-speed wind turbines based on improved coordinated control of rotor speed and pitch angle[J]. Electric Power Automation Equipment, 2023, 43(9): 87-94.
[10] Zhang Wei, Fang Kailun.Controlling active power of wind farms to participate in load frequency control of power systems[J]. IET Generation, Transmission & Distribution, 2017, 11(9): 2194-2203.
[11] 李可心, 安军, 石岩, 等. 基于可用调频能量的风电机组综合虚拟惯性控制参数整定[J]. 电工技术学报, 2025, 40(5): 1382-1394.
Li Kexin, An Jun, Shi Yan, et al.An integrated virtual inertia control parameter setting method for wind turbine based on available frequency regulation energy[J]. Transactions of China Electrotechnical Society, 2025, 40(5): 1382-1394.
[12] Prasad R, Padhy N P.Synergistic frequency regulation control[J]. IEEE Transactions on Energy Conversion, 2020, 35(4): 181-3191.
[13] 乔颖, 郭晓茜, 鲁宗相, 等. 考虑系统频率二次跌落的风电机组辅助调频参数确定方法[J]. 电网技术, 2020, 44(3): 807-815.
Qiao Ying, Guo Xiaoqian, Lu Zongxiang, et al.Parameter setting of auxiliary frequency regulation of wind turbines considering secondary frequency drop[J]. Power System Technology, 2020, 44(3): 807-815.
[14] Hajiakbari Fini M, Hamedani Golshan M E. Determining optimal virtual inertia and frequency control parameters to preserve the frequency stability in islanded microgrids with high penetration of renewables[J]. Electric Power Systems Research, 2018, 154: 13-22.
[15] 王鑫, 杨德健. 基于变系数PI控制的双馈风电机组自适应转速恢复策略[J]. 电工技术学报, 2023, 38(15): 4120-4129.
Wang Xin, Yang Dejian.Adaptive speed recovery strategy of doubly-fed induction generator based on variable PI control coefficient[J]. Transactions of China Electrotechnical Society, 2023, 38(15): 4120-4129.
[16] Garmroodi M, Verbič G, Hill D J.Frequency support from wind turbine generators with a time-variable droop characteristic[J]. IEEE Transactions on Sustainable Energy, 2018, 9(2): 676-684.
[17] 赵冬梅, 宋晨铭, 冯向阳, 等. 100%新能源场景下考虑频率稳定约束的源网荷储一体化系统储能优化配置[J]. 电工技术学报, 2025, 40(7): 2146-2161.
Zhao Dongmei, Song Chenming, Feng Xiangyang, et al.The optimal configuration of energy storage in the source-grid-load-storage integrated system considering frequency stability constraints in 100% new energy scenarios[J].Transactions of China Electrotechnical Society, 2025, 40(7): 2146-2161.
[18] Carpintero-Renteria M, Santos-Martin D, Lent A, et al.Wind turbine power coefficient models based on neural networks and polynomial fitting[J]. IET Renewable Power Generation, 2020, 14(11): 1841-1849.
[19] Barzegar-Kalashani M, Seyedmahmoudian M, Mekhilef S, et al.Small-scale wind turbine control in high-speed wind conditions: a review[J]. Sustainable Energy Technologies and Assessments, 2023, 60: 103577.
[20] Liu Hui, Wang Peng, Zhao Teyang, et al.A group-based droop control strategy considering pitch angle protection to deloaded wind farms[J]. Energies, 2022, 15(8): 2722.
[21] 李世春, 申骜, 程绪长, 等. 提升惯量响应与转速恢复的风储协调惯量控制方法[J]. 电网技术, 2023, 47(4): 1570-1580.
Li Shichun, Shen Ao, Cheng Xuchang, et al.Wind-storage coordinated inertia control for improving inertia response and rotor speed recovery[J]. Power System Technology, 2023, 47(4): 1570-1580.
[22] 张龙, 孙丹, 张旭, 等. 计及工作点偏移的减载风电系统频率响应模型[J]. 电力系统自动化, 2024, 48(16): 79-87.
Zhang Long, Sun Dan, Zhang Xu, et al.System frequency response model of deloaded wind power system considering working point shifting[J]. Automation of Electric Power Systems, 2024, 48(16): 79-87.
[23] Bastiani B A, de Oliveira R V. Adaptive MPPT control applied to virtual synchronous generator to extend the inertial response of type-4 wind turbine generators[J]. Sustainable Energy, Grids and Networks, 2021, 27: 100504.
[24] 牛景瑶, 王德林, 喻心, 等. 提高风电消纳水平的低惯性电网参数优化[J]. 电机与控制学报, 2022, 26(2): 111-120.
Niu Jingyao, Wang Delin, Yu Xin, et al.Parameter optimization of low inertia power system to improve wind power consumption level[J]. Electric Machines and Control, 2022, 26(2): 111-120.
[25] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 电能质量电力系统频率偏差: GB/T 15945—2008[S]. 北京: 中国标准出版社, 2008.
[26] Wen Jiaxin, Bu Siqi, Li Fangxing, et al.Risk assessment and mitigation on area-level RoCoF for operational planning[J]. Energy, 2021, 228: 120632.
[27] 国家市场监督管理总局, 国家标准化管理委员会. 并网电源一次调频技术规定及试验导则: GB/T 40595—2021[S]. 北京: 中国标准出版社, 2021. |