|
|
Analysis of Subsynchronous Oscillation Characteristics and Mechanism of Grid-Forming/Grid-Following Hybrid Wind Farms |
Gao Benfeng1, Liu Peixin1, Sun Dawei2, Wang Xiao2, Wu Linlin2, Deng Pengcheng1, Zheng Zhanxiang1, Ju Mengqin1 |
1. Hebei Key Laboratory of Distributed Energy Storage and Micro-grid North China Electric Power University Baoding 071003 China; 2. State Grid Wind-photovoltaic-energy Storage Hybrid Power Generation Technology Laboratory North China Electric Power Research Institute Co. Ltd Beijing 100045 China |
|
|
Abstract With the increasing penetration rate of new energy units, the power system has more oscillation accidents with grid-following direct-drive wind farms. Compared with the grid-following control, the grid- forming control has suitable voltage and frequency support capabilities, and wind energy can be transmitted through the hybrid wind farm where the two controls coexist. After the grid-forming direct-drive wind farm based on the matching control strategy partially replaces the grid-following one, the influence mechanism of the hybrid wind farm subsynchronous oscillation (SSO) formed by the match-grid-forming wind turbine needs to beclarified. This paper first introduces the match-grid-forming control, the grid-following control, and the topology of the hybrid wind farm. Based on the mathematical model of the grid-connected system, the small signal model of the system is constructed in Matlab/Simulink simulation using the modular modeling method. Then, the small signal model of the grid-connected system is analyzed, the dominant SSO mode and its participating factors areanalyzed from the wind turbine proportion perspective, and the influence of match-grid-forming wind turbines on SSO is explained from the damping perspective. Finally, regarding root trajectory and electromagnetic transient time-domain response, the changes in SSO characteristics under different operating parameters are analyzed. After the SSO triggered by the grid-following wind farm occurs in the hybrid wind farm, the parameters of the grid-following wind farm are mainly involved in the dominant SSO mode, and the participation of the match-grid-forming wind farm and the AC grid parameters is limited. With the increase of match-grid-forming wind turbines in the hybrid wind farm, the eigenroots of the dominant SSO mode gradually decrease, and the oscillation frequency in creases in the range of about 1 Hz. Moreover, the damping of hybrid wind farms increases in the subsynchronous frequency band. There is a damping minimum in the damping frequency characteristic curve, and the risk of SSO at this frequency is the greatest in the system. The conclusions are as follows. (1) The SSO caused by the grid-following wind turbine in the hybrid wind farm is mainly related to the parameters of the grid-following wind farm, which are rarely involved in the SSO mode. (2) Match-grid-forming wind turbines can improve the system’s damping in hybrid wind farms. When SSO occurs in a hybrid wind farm, the match-grid-forming wind turbine can play a restraining role. The proportion of match-grid-forming fans increases, and the inhibition effect also increases. However, the effect is weakened, and the proportion of match-grid-forming fans is appropriate at 20%. (3) Only when the proportion of match- grid-forming fans increases, can the SSO of grid-following fans be inhibited significantly. The parameters can be optimized based on the grid-following wind farms: within a specific range, increase the DC bus capacitance parameter CDC, decrease the phase-locked loop proportionality factor, and increase the integration coefficient of PI3L in the current inner loop Ti3L.
|
Received: 06 March 2024
|
|
|
|
|
[1] 黄萌, 凌扬坚, 耿华, 等. 功率同步控制的构网型变流器多机交互分析与稳定控制研究综述[J]. 高电压技术, 2023, 49(11): 4571-4583. Huang Meng, Ling Yangjian, Geng Hua, et al.Review on multi-machine interaction analysis and stability control of grid converter with power synchronization control[J]. High Voltage Engineering, 2023, 49(11): 4571-4583. [2] 孙秋野, 隋政麒, 王睿, 等. “双高”电力系统非经典稳定性分析[J]. 中国电机工程学报, 2023, 43(增刊1): 1-13. Sun Qiuye, Sui Zhengqi, Wang Rui, et al.Non- classical stability analysis of “double-high” power system[J]. Proceedings of the CSEE, 2023, 43(S1): 1-13. [3] 李景一, 毕天姝, 于钊, 等. 直驱风机变流控制系统对次同步频率分量的响应机理研究[J]. 电网技术, 2017, 41(6): 1734-1740. Li Jingyi, Bi Tianshu, Yu Zhao, et al.Study on response characteristics of grid converter control system of permanent magnet synchronous generators (PMSG) to subsynchronous frequency component[J]. Power System Technology, 2017, 41(6): 1734-1740. [4] 周琰. 构网型换流器同步频率振荡特性分析及抑制策略研究[D]. 北京: 华北电力大学, 2023. Zhou Yan.Analysis of synchronous frequency oscillation characteristics and research on suppression strategy of reticulated converter[D]. Beijing: North China Electric Power University, 2023. [5] 孙正龙, 郝舒宇, 李明达, 等. 含构网型双馈风电的电力系统低频振荡能量结构分析方法[J/OL]. 电工技术学报, 1-16. Sun Zhenglong, Hao Shuyu, Li Mingda, et al.low frequency oscillation analysis method for grid- forming doubly-fed wind power systems based on energy structures[J/OL]. Transactions of China Electrotechnical Society, 1-16. [6] 迟永宁, 江炳蔚, 胡家兵, 等. 构网型变流器: 物理本质与特征[J/OL]. 高电压技术, 1-15[2024-01-23]. Chi Yongning, Jiang Bingwei, Hu Jiabing, et al.Reticulated converters: physical nature and characte- ristics[J/OL]. High Voltage Technology, 1-15 [2024- 01-23]. [7] Yang Renxin, Shi Gang, Cai Xu, et al.Voltage source control of offshore all-DC wind farm[J]. The Journal of Engineering, 2019, 2019(18): 4718-4722. [8] 袁枭添, 杜正春, 李宇骏, 等. 基于直流电压同步的构网型直驱风机两阶段主动阻尼支撑控制策略[J]. 电网技术, 2023, 47(12): 4995-5007. Yuan Xiaotian, Du Zhengchun, Li Yujun, et al.Two- stage control of DC voltage-synchronized directly- driven wind turbine for active damping support[J]. Power System Technology, 2023, 47(12): 4995-5007. [9] 桑顺, 徐婷, 齐琛, 等. 惯性同步构网型变换器定量感知电网频率的机理及抗干扰控制策略[J]. 电网技术, 2023, 47(4): 1395-1406. Sang Shun, Xu Ting, Qi Chen, et al.Mechanism of quantitatively sensing grid frequency and anti- disturbance control strategy for the grid-forming converter[J]. Power System Technology, 2023, 47(4): 1395-1406. [10] Yang Renxin, Shi Gang, Cai Xu, et al.Autonomous synchronizing and frequency response control of multi-terminal DC systems with wind farm inte- gration[J]. IEEE Transactions on Sustainable Energy, 2020, 11(4): 2504-2514. [11] Wang Weiyu, Jiang Lin, Cao Yijia, et al.A parameter alternating VSG controller of VSC-MTDC systems for low frequency oscillation damping[J]. IEEE Transa- ctions on Power Systems, 2020, 35(6): 4609-4621. [12] 谢震, 高翔, 张悬光, 等. 弱电网下功率同步构网型DFIG的阻尼分析及转矩振荡抑制[J]. 电力系统自动化, 2023, 47(11): 29-38. Xie Zhen, Gao Xiang, Zhang Xuanguang, et al.Damping analysis and torque oscillation suppression of power synchronized grid-forming doubly-fed induction generator in weak grid[J]. Automation of Electric Power Systems, 2023, 47(11): 29-38. [13] 李辉, 王坤, 胡玉, 等. 双馈风电系统虚拟同步控制的阻抗建模及稳定性分析[J]. 中国电机工程学报, 2019, 39(12): 3434-3443. Li Hui, Wang Kun, Hu Yu, et al.Impedance modeling and stability analysis of virtual synchronous control based on doubly-fed wind generation systems[J]. Proceedings of the CSEE, 2019, 39(12): 3434-3443. [14] 王玉坤, 张慕婕, 李壮, 等. 构网型直驱风电机组间控制相互作用研究[J/OL]. 电力自动化设备: 1-10. Wang Yukun, Zhang Mujie, Li Zhuang, et al.Research on control interaction between grid-based direct-drive wind turbines[J/OL]. Electric Power Automation Equipment, 1-10 [2024-01-23]. [15] 薛翼程, 张哲任, 徐政, 等. 构网型变流器对交流系统低频振荡的影响分析与阻尼控制[J]. 电力系统自动化, 2023, 47(16): 103-113. Xue Yicheng, Zhang Zheren, Xu Zheng, et al.Impact analysis and damping control of grid-forming con- verter for low-frequency oscillation of AC system[J]. Automation of Electric Power Systems, 2023, 47(16): 103-113. [16] Fu Siqi, Sun Yao, Li Lang, et al.Power oscillation suppression of multi-VSG grid via decentralized mutual damping control[J]. IEEE Transactions on Industrial Electronics, 2022, 69(10): 10202-10214. [17] Sun Peng, Xu Hao, Yao Jun, et al.Dynamic interaction analysis and damping control strategy of hybrid system with grid-forming and grid-following control modes[J]. IEEE Transactions on Energy Con- version, 2023, 38(3): 1639-1649. [18] 罗澍忻, 韩应生, 余浩, 等. 构网型控制在提升高比例新能源并网系统振荡稳定性中的应用[J]. 南方电网技术, 2023, 17(5): 39-48. Luo Shuxin, Han Yingsheng, Yu Hao, et al.Appli- cation of grid-forming control in improving the oscillation stability of power systems with high proportion renewable energy integration[J]. Southern Power System Technology, 2023, 17(5): 39-48. [19] 王东泽, 孙海顺, 黄碧月, 等. 基于虚拟同步控制的电压源型直驱风电机组并网稳定性分析[J]. 高电压技术, 2022, 48(8): 3282-3294. Wang Dongze, Sun Haishun, Huang Biyue, et al.Analysis of grid-connected stability of voltage- source-type PMSG-based wind turbine based on virtual synchronous control[J]. High Voltage Engin- eering, 2022, 48(8): 3282-3294. [20] 张祥宇, 罗程远, 付媛, 等. 风储锁相弹性耦合下的系统次同步振荡抑制技术[J]. 中国电机工程学报, 2024, 44(16): 6507-6518. Zhang Xiangyu, Luo Chengyuan, Fu Yuan, et al.Subsynchronous oscillation suppression technology of the system under the elastic coupling of wind-storage lock-in[J]. Proceedings of the CSEE, 2024, 44(16): 6507-6518. [21] 伍双喜, 王晰, 刘洋, 等. 基于构网型储能的风电场-弱电网次同步振荡抑制方法[J]. 电力建设, 2024, 45(4): 147-155. Wu Shuangxi, Wang Xi, Liu Yang, et al.Subsyn- chronous damping control of grid-forming BESS in wind farms connected to a weak AC grid[J]. Electric Power Construction, 2024, 45(4): 147-155. [22] 吴家杰, 陈新, 张东辉, 等. 构网型储能变换器在新能源接入场景下并网稳定性分析及提升策略[J/OL]. 中国电机工程学报: 1-14 [2024-01-23]. Wu Jiajie, Chen Xin, Zhang Donghui, et al.Grid- connected stability analysis and improvement strategy of grid-based energy storage converter in new energy access scenario[J/OL]. Proceedings of the CSEE, 1-14[2024-01-23]. [23] 陈露洁, 徐式蕴, 孙华东, 等. 高比例电力电子电力系统宽频带振荡研究综述[J]. 中国电机工程学报, 2021, 41(7): 2297-2310. Chen Lujie, Xu Shiyun, Sun Huadong, et al.A review of the research on broadband oscillation of power systems with high proportion of power electronics[J]. Proceedings of the CSEE, 2021, 41(7): 2297-2310. [24] 高本锋, 邓鹏程, 孙大卫, 等. 基于匹配控制的构网型直驱风电场次同步振荡机理与特性研究[J]. 电工技术学报, 2024, 39(9): 2755-2770. Gao Benfeng, Deng Pengcheng, David Sun, et al.mechanism and characteristics of subsynchronous oscillation of grid forming direct-drive wind farm based on matching control[J]. Transactions of China Electrotechnical Society, 2024, 39(9): 2755-2770. [25] Yuan Hao, Yuan Xiaoming, Hu Jiabing.Modeling of grid-connected VSCs for power system small-signal stability analysis in DC-link voltage control time- scale[J]. IEEE Transactions on Power Systems, 2017, 32(5): 3981-3991. [26] Lu Jun, Yuan Xiaoming, Hu Jiabing, et al.Motion equation modeling of LCC-HVDC stations for analyzing DC and AC network interactions[J]. IEEE Transactions on Power Delivery, 2020, 35(3): 1563-1574. [27] Huang Yunhui, Zhai Xuebing, Hu Jiabing, et al.Modeling and stability analysis of VSC internal voltage in DC-link voltage control timescale[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2018, 6(1): 16-28. [28] 高本锋, 王义, 范辉, 等. 基于阻尼路径的新能源经LCC-HVDC送出系统次同步交互作用分析方法[J]. 电工技术学报, 2023, 38(20): 5572-5589. Gao Benfeng, Wang Yi, Fan Hui, et al.A sub- synchronous interaction analysis method of renewable energy generations integrated with LCC-HVDC system based on damping path[J]. Transactions of China Electrotechnical Society, 2023, 38(20): 5572-5589. [29] Hu Jiabing, Yuan Hao, Yuan Xiaoming.Modeling of DFIG-based WTs for small-signal stability analysis in DVC timescale in power electronized power systems[J]. IEEE Transactions on Energy Conversion, 2017, 32(3): 1151-1165. [30] 李龙源, 付瑞清, 吕晓琴, 等. 接入弱电网的同型机直驱风电场单机等值建模[J]. 电工技术学报, 2023, 38(3): 712-725. Li Longyuan, Fu Ruiqing, Lü Xiaoqin, et al.Single machine equivalent modeling of weak grid connected wind farm with same type PMSGs[J]. Transactions of China Electrotechnical Society, 2023, 38(3): 712-725. [31] Li Yujun, Yuan Xiaotian, Li Jiapeng, et al.Novel grid-forming control of PMSG-based wind turbine for integrating weak AC grid without sacrificing maximum power point tracking[J]. IET Generation, Transmi- ssion & Distribution, 2021, 15(10): 1613-1625. [32] 高本锋, 刘培鑫, 刘王锋, 等. 直驱风电场并网对火电机组次同步谐振影响[J/OL]. 电工技术学报, 1-16 [2024-01-23]. Gao Benfeng, Liu Peixin, Liu Wangfeng, et al.influence of grid connected direct drive wind farm on subsynchronous resonance of thermal power units[J/OL]. Transactions of China Electrotechnical Society, 1-16 [2024-01-23]. |
|
|
|