|
|
Design of Dual Redundant Repulsion Mechanism for Hydraulic Mechanism of Fast Circuit Breakers |
Yin Sheng1, Li Zhibing2, Tian Yu2, Feng Xiyu1, Wang Yongxing1, Dong Enyuan1 |
1. School of Electrical Engineering Dalian University of Technology Dalian 116024 China; 2. China Electric Power Research Institute Beijing 100192 China |
|
|
Abstract Flexible low-frequency transmission is a new AC transmission technology that transmits 20 Hz. It can reduce reactance, increase transmission power and distance, and solve the long-distance, large-capacity transmission problem of offshore wind power. Flexible low-frequency transmission is a supplement to power frequency AC and DC transmission, which can also be applied to power grid security interconnection, multi-island interconnection, cable-based urban power supply, and other scenarios. Conventional SF6 circuit breaker trips using ordinary solenoid valve with a tripping time of about 11~14 ms, existing action delay. Fast SF6 circuit breaker controls valve spool through the electromagnetic repulsion force to drive the fast action, greatly reducing the action time to less than 2 ms. It can alleviate the problems of long arcing time and considerable energy needed to break the arc, which improves the circuit breaker's breaking capacity. Combined with the fast circuit breaker and the phase-selecting opening technology, accurately predicting the zero-crossing point of the short-circuit fault current effectively reduces the arcing time and successfully breaks in the short arcing time. In addition, the influence of the current frequency on the breaking time of the short-circuit fault is reduced. The fast circuit breaker of 220 kV and above voltage level often adopts a double relay protection device and double tripping mode. A time difference between its action time and single tripping affects the accuracy of phase selection and opening. Based on the coupling relationship of the magnetic field, this paper proposes a method to reduce the action time difference using a demagnetization coil and designs a double redundant repulsion mechanism. The opening process involves multi-physical field coupling, such as magnetic field coupling, eddy current loss, loop discharge, and mechanical motion. The physical quantities (magnetic induction intensity, electromagnetic field energy, electromagnetic force, and inductance) are derived by calculating the electromotive and magnetomotive forces. The multi-factor coupling influence of capacitance voltage, capacitance, and demagnetization coil turns on the action time difference is analyzed, and the optimal design parameters are obtained. The results show that the design of the demagnetization coil can effectively reduce the action time difference of a fast circuit breaker. According to the simulation analysis, a double redundant repulsion mechanism based on a demagnetization coil is developed. Under the capacitance voltage of 1 200 V and the capacitance capacity of 4 000 μF, the peak current and pulse width of the experiment and simulation are almost the same. The action time of the single repulsion mechanism and the double repulsion mechanism is 2.07 ms and 2.22 ms, respectively, and the time difference is 0.15 ms. The simulation and experiment verify that the theoretical analysis and design scheme.
|
Received: 06 January 2024
|
|
|
|
|
[1] 赵国亮, 陈维江, 邓占锋, 等. 柔性低频交流输电关键技术及应用[J]. 电力系统自动化, 2022, 46(15): 1-10. Zhao Guoliang, Chen Weijiang, Deng Zhanfeng, et al.Key technologies and application of flexible low- frequency AC transmission[J]. Automation of Electric Power Systems, 2022, 46(15): 1-10. [2] 李根, 杜志叶, 肖湃, 等. 海上风电送出J型管段海底电缆载流量计算模型研究[J]. 电工技术学报, 2023, 38(13): 3619-3629. Li Gen, Du Zhiye, Xiao Pai, et al.Study on calculation model of submarine cable ampacity in J-tube section of offshore wind power transmission[J]. Transactions of China Electrotechnical Society, 2023, 38(13): 3619-3629. [3] 高晨, 赵勇, 汪德良, 等. 海上风电机组电气设备状态检修技术研究现状与展望[J]. 电工技术学报, 2022, 37(增刊1): 30-42. Gao Chen, Zhao Yong, Wang Deliang, et al.Research status and prospect of condition based maintenance technology for offshore wind turbine electrical equipment[J]. Transactions of China Electrotechnical Society, 2022, 37(S1): 30-42. [4] 刘士利, 罗英楠, 刘宗烨, 等. 基于电磁-热耦合原理的三芯铠装电缆在低频输电方式下的损耗特性研究[J]. 电工技术学报, 2021, 36(22): 4829-4836. Liu Shili, Luo Yingnan, Liu Zongye, et al.Study on loss characteristics of three core armored cable under low-frequency transmission mode based on electro- magnetic, thermal coupling principle[J]. Transactions of China Electrotechnical Society, 2021, 36(22): 4829-4836. [5] 刘云鹏, 赵家莹, 刘贺晨, 等. 低频电压下含纤维素颗粒变压器油绝缘特性及影响因素[J]. 电工技术学报, 2024, 39(4): 1198-1207. Liu Yunpeng, Zhao Jiaying, Liu Hechen, et al.Insulation characteristics and influencing factors of transformer oil containing cellulose particles under low-frequency voltage[J]. Transactions of China Electrotechnical Society, 2024, 39(4): 1198-1207. [6] 孙雷强, 庄劲武, 王冲, 等. 基于联合仿真的断路器合闸电磁铁的动态特性研究[J]. 电气工程学报, 2023, 18(1): 104-110. Sun Leiqiang, Zhuang Jinwu, Wang Chong, et al.Research on dynamic characteristics of circuit breaker’s closing electromagnet based on co- simulation[J]. Journal of Electrical Engineering, 2023, 18(1): 104-110. [7] 何俊佳, 袁召, 经鑫, 等. 电磁斥力机构研究综述[J]. 高电压技术, 2017, 43(12): 3809-3818. He Junjia, Yuan Zhao, Jing Xin, et al.Review of research on repulsion mechanism[J]. High Voltage Engineering, 2017, 43(12): 3809-3818. [8] 田宇, 朱苛娄, 许家源, 等. 10 kV快速分相断路器样机研制[J]. 电网技术, 2015, 39(8): 2346-2350. Tian Yu, Zhu Kelou, Xu Jiayuan, et al.Development of 10 kV high-speed vacuum breaker prototype[J]. Power System Technology, 2015, 39(8): 2346-2350. [9] 娄杰, 李庆民, 孙庆森, 等. 快速电磁推力机构的动态特性仿真与优化设计[J]. 中国电机工程学报, 2005, 25(16): 23-29. Lou Jie, Li Qingmin, Sun Qingsen, et al.Dynamic characteristics simulation and optimal design of the fast electromagnetic repulsion mechanism[J]. Pro- ceedings of the CSEE, 2005, 25(16): 23-29. [10] Zhu Zhexiao, Yuan Zhao, Chen Lixue, et al.Vibration characteristics of Thomson coil actuator based on simulation and experiments[J]. IEEE Transactions on Energy Conversion, 2020, 35(3): 1228-1237. [11] 田宇, 王利, 田阳, 等. 直流断路器用快速开关多场联合仿真优化方法[J]. 高电压技术, 2019, 45(1): 55-62. Tian Yu, Wang Li, Tian Yang, et al.Multi-field co- simulation optimization method for high-speed switch in DC circuit breaker[J]. High Voltage Engineering, 2019, 45(1): 55-62. [12] 王立军, 王宏达, 马金伟, 等. 40.5 kV/50 kA真空开关用双层线圈式快速斥力机构驱动技术的仿真研究[J]. 高压电器, 2023, 59(6): 25-32. Wang Lijun, Wang Hongda, Ma Jinwei, et al.Simulation research on driving technology of double- layer coil fast repulsive mechanism for 40.5 kV/50 kA vacuum switch[J]. High Voltage Apparatus, 2023, 59(6): 25-32. [13] 董恩源, 刘罡, 邹启涛, 等. 长行程断路器操动用新型磁力机构[J]. 高电压技术, 2010, 36(3): 816-820. Dong Enyuan, Liu Gang, Zou Qitao, et al.New type magnetic force actuator (MFA) for long stroke circuit breaker[J]. High Voltage Engineering, 2010, 36(3): 816-820. [14] 刘晓明, 张煦松, 姜文涛, 等. 基于混沌吸引子的真空断路器永磁斥力机构机械故障识别方法[J]. 电工技术学报, 2022, 37(20): 5334-5346. Liu Xiaoming, Zhang Xusong, Jiang Wentao, et al.A method of mechanical fault identification of per- manent magnet repulsion mechanism of vacuum circuit breaker based on chaos attractor[J]. Transa- ctions of China Electrotechnical Society, 2022, 37(20): 5334-5346. [15] 张修雅, 袁召, 陈立学, 等. 电磁斥力机构能量转换效率分析[J]. 电网技术, 2019, 43(5): 1849-1855. Zhang Xiuya, Yuan Zhao, Chen Lixue, et al.Study of energy conversion efficiency of electromagnetic repulsion mechanism[J]. Power System Technology, 2019, 43(5): 1849-1855. [16] 张力, 阮江军, 黄道春, 等. 双盘式线圈结构快速斥力机构设计与运动特性仿真研究[J]. 电工技术学报, 2018, 33(2): 255-264. Zhang Li, Ruan Jiangjun, Huang Daochun, et al.Study on the design and movement characteristics simulation of a fast repulsion mechanism based on double-coil structure[J]. Transactions of China Elec- trotechnical Society, 2018, 33(2): 255-264. [17] 黎嘉浩, 庄劲武, 武瑾, 等. 微型高速电磁斥力机构设计[J]. 高电压技术, 2021, 47(12): 4349-4356. Li Jiahao, Zhuang Jinwu, Wu Jin, et al.Design of miniature high speed electromagnetic repulsion mechanism[J]. High Voltage Engineering, 2021, 47(12): 4349-4356. [18] 朱哲晓, 袁召, 陈立学, 等. 电磁斥力机构结构应力分析与优化设计[J]. 高电压技术, 2020, 46(8): 2692-2699. Zhu Zhexiao, Yuan Zhao, Chen Lixue, et al.Stru- ctural stress analysis and optimization design of electromagnetic repulsion mechanism[J]. High Voltage Engineering, 2020, 46(8): 2692-2699. [19] 王汝凡, 王德全, 邱军, 等. 快速开关多场协同仿真下的应力与形变研究[J]. 电网技术, 2021, 45(7): 2913-2923. Wang Rufan, Wang Dequan, Qiu Jun, et al.Research on stress and deformation under multi-field cooperative simulation of fast switch[J]. Power System Technology, 2021, 45(7): 2913-2923. [20] 程显, 赵海洋, 葛国伟, 等. 基于螺线管和线圈盘的新型混合式斥力机构分析[J]. 电工技术学报, 2020, 35(14): 2997-3006. Cheng Xian, Zhao Haiyang, Ge Guowei, et al.Analysis of the new hybrid repulsion mechanism based on series-connected solenoid and coil plate[J]. Transactions of China Electrotechnical Society, 2020, 35(14): 2997-3006. [21] 郭兴宇, 梁德世, 黄智慧, 等. 基于多场耦合的电磁斥力机构运动参数研究[J]. 高电压技术, 2022, 48(2): 626-635. Guo Xingyu, Liang Deshi, Huang Zhihui, et al.Research on motion parameters of electromagnetic repulsion mechanism based on multi-field coupling[J]. High Voltage Engineering, 2022, 48(2): 626-635. [22] 温伟杰, 李斌, 李博通, 等. 基于双向电磁斥力机构的高压快速开关缓冲特性研究[J]. 电工技术学报, 2019, 34(7): 1449-1458. Wen Weijie, Li Bin, Li Botong, et al.Research on the buffering characteristics of high voltage fast mechani- cal switch based on bi-directional electromagnetic repulsion mechanism[J]. Transactions of China Electrotechnical Society, 2019, 34(7): 1449-1458. [23] 张烈, 王德林, 刘亚东, 等. 国家电网220 kV及以上交流保护十年运行分析[J]. 电网技术, 2017, 41(5): 1654-1659. Zhang Lie, Wang Delin, Liu Yadong, et al.Analysis on protective relaying and its operation conditions in 220 kV and above AC system of SGCC in past ten years[J]. Power System Technology, 2017, 41(5): 1654-1659. [24] 吴少斌, 陈小琪. 双重化继电保护隐性故障风险评估研究[J]. 通信电源技术, 2018, 35(10): 17-19. Wu Shaobin, Chen Xiaoqi.Research on risk assessment of double faults for relay protection[J]. Telecom Power Technology, 2018, 35(10): 17-19. |
|
|
|