|
|
Improved Impedance Modeling of Self-Inductive Displacement Sensor Based on the Modulus and Angle of the Coil Impedance |
Chen Xinwei1, Li Hongwei1, Ren Zongqiang2, Yu Wentao1, Ding Yinshu3 |
1. School of Electrical Engineering Shandong University Jinan 250061 China; 2. School of Electrical Engineering Xi'an Jiaotong University Xi'an 710049 China; 3. Shandong Tomorrow Machinery Group Co. Ltd Jinan 250200 China |
|
|
Abstract At present, active magnetic bearing (AMB) is widely used in various industries. The rotor displacement sensor detects the rotor vibration displacement in real-time to provide a control basis for the AMB controller. Therefore, it is a vital component that affects the control performance of AMB. The self-inductive displacement sensor is increasingly widely used in AMBs for its many advantages. Since the iron core reluctance and the leakage flux in the air-gap magnetic circuit are not considered, the traditional ideal model of the self-inductive displacement sensor fails to predict the performance of the sensor accurately. Therefore, this paper proposes an improved impedance model of the self-inductive displacement sensor based on the modulus and angle of the coil impedance. Firstly, according to the working principle, a sensor equivalent magnetic circuit model is established for the differential self-inductive displacement sensor. The influence of eddy current and hysteresis effects on the reluctance of iron cores is considered by introducing the complex permeability, and the leakage flux and edge effect on the reluctance of the air gap is considered by introducing the air-gap stray coefficient. Then, an improved impedance model of sensor coils is established. By the improved impedance model, the output voltage and sensitivity of the sensor are predicted. Secondly, under different excitation frequencies and rotor displacements, the resistance and inductance of iron coils of a designed sensor are measured based on a designed coil impedance test rig, and the output voltage of the designed sensor is measured based on a designed sensor static performance test rig. According to the experimental results, the parameters of the improved impedance model are obtained. Then, the output voltage and sensitivity of the sensor are predicted under different excitation frequencies. Finally, the results show that the prediction absolute error of the output voltage is less than 0.05 V, and the relative error of the sensitivity prediction is less than 1%, which verifies the accuracy of the impedance improvement model. The following conclusions can be drawn. (1) The improved impedance model can accurately account for the effects of eddy currents and hysteresis loss in iron cores at high frequencies by introducing complex magnetic permeability. (2) The improved impedance model can accurately account for the impact of flux leakage and edge effects in air-gap by introducing the air-gap reluctance stray coefficient. (3) Variations in model parameters with rotor displacement and excitation frequency are obtained through experiments, and an accurate improved impedance model of the sensor is established and verified.
|
Received: 07 December 2023
|
|
|
|
|
[1] 禹春敏, 邓智泉, 梅磊, 等. 基于精确磁路的新型混合型轴向-径向磁悬浮轴承研究[J]. 电工技术学报, 2021, 36(6): 1219-1228. Yu Chunmin, Deng Zhiquan, Mei Lei, et al.Research of new hybrid axial-radial magnetic bearing based on accurate magnetic circuit[J]. Transactions of China Electrotechnical Society, 2021, 36(6): 1219-1228. [2] Xu Shilei, Fang Jiancheng.A novel conical active magnetic bearing with claw structure[J]. IEEE Transactions on Magnetics, 2014, 50(5): 2295060. [3] 张维煜, 朱熀秋, 袁野. 磁悬浮轴承应用发展及关键技术综述[J]. 电工技术学报, 2015, 30(12): 12-20. Zhang Weiyu, Zhu Huangqiu, Yuan Ye.Study on key technologies and applications of magnetic bearings[J]. Transactions of China Electrotechnical Society, 2015, 30(12): 12-20. [4] 胡烽, 孙宏博, 蒋栋, 等. 基于四相全桥的磁悬浮轴承开关器件开路故障容错控制策略[J]. 电工技术学报, 2022, 37(9): 2295-2305, 2340. Hu Feng, Sun Hongbo, Jiang Dong, et al.Fault- tolerant strategy of four-phase full-leg for active magnetic bearing in case of open circuit fault of switching device[J]. Transactions of China Electrotechnical Society, 2022, 37(9): 2295-2305, 2340. [5] 李翁衡, 祝长生. 主动电磁轴承-柔性转子系统振动位移的高精度跟踪和估计方法[J]. 电工技术学报, 2023, 38(12): 3151-3164. Li Wengheng, Zhu Changsheng.High precision tracking and estimation method for vibration dis- placement of active magnetic bearings-flexible rotor system[J]. Transactions of China Electrotechnical Society, 2023, 38(12): 3151-3164. [6] 李志, 苏振中, 胡靖华, 等. 磁轴承复合位移传感设计与实验研究[J]. 电工技术学报, 2021, 36(7): 1425-1433. Li Zhi, Su Zhenzhong, Hu Jinghua, et al.Design and experimental research of magnetic bearing compound displacement sensor[J]. Transactions of China Elec- trotechnical Society, 2021, 36(7): 1425-1433. [7] Babu A, George B.Design and development of a new non-contact inductive displacement sensor[J]. IEEE Sensors Journal, 2018, 18(3): 976-984. [8] Fericean S, Droxler R.New noncontacting inductive analog proximity and inductive linear displacement sensors for industrial automation[J]. IEEE Sensors Journal, 2007, 7(11): 1538-1545. [9] Fang Jiancheng, Wen Tong.A wide linear range eddy current displacement sensor equipped with dual-coil probe applied in the magnetic suspension flywheel[J]. Sensors, 2012, 12(8): 10693-10706. [10] Chen Sengchi, Le D K, Nguyen V S.Inductive displacement sensors with a Notch filter for an active magnetic bearing system[J]. Sensors, 2014, 14(7): 12640-12657. [11] Yang S H, Hirata K, Ota T, et al.Impedance linearity of contactless magnetic type position sensor[C]//2016 IEEE Conference on Electromagnetic Field Com- putation (CEFC), Miami, FL, USA, 2016: 1. [12] Mitchell S D, Welsh J S.The influence of complex permeability on the broadband frequency response of a power transformer[J]. IEEE Transactions on Power Delivery, 2010, 25(2): 803-813. [13] Tian G Y, Baines R W, Zhao Z X, et al.Computational algorithms for linear variable differential transformers (LVDTs)[J]. IEE Proceedings-Science, Measurement and Technology, 1997, 144(4): 189-192. [14] 汪希平, 崔卫东. 电磁轴承用非接触式位移传感器的研究[J]. 上海大学学报 (自然科学版), 1998, 4(1): 56-62. Wang Xiping, Cui Weidong.Research on non-contact displacement sensor for electromagnetic bearing[J]. Journal of Shanghai University (Natural Science Edition), 1998, 4(1): 56-62. [15] 赵雷, 于金鹏, 赵晶晶, 等. 传感器跳动及电磁轴承转子动态响应分析[C]//第十届全国磁悬浮技术与振动控制学术会议(CSMLTVC10) 论文集, 沈阳, 中国, 2022: 28-29. Zhao Lei, Yu Jinpeng, Zhao Jingjing, et al.Analysis of sensor jitter and dynamic response of electro- magnetic bearing rotors[C]//10th China Symposium on Magnetic Levitation Technology and Vibration Control (CSMLTVC10), Shenyang, China, 2022: 28-29. [16] Bonfitto A, Ran Gabai, Tonoli A, et al.Resonant inductive displacement sensor for active magnetic bearings[J]. Sensors and Actuators A: Physical, 2019, 287: 84-92. [17] 时振刚, 周燕, 赵晶晶, 等. 基于自感式可测量转子径轴向位移的新型传感器[C]//第六届全国新堆与研究堆学术会议, 伊犁, 中国, 2006: 124-126. Shi Zhengang, Zhou Yan, Zhao Jingjing, et al.A new type of self-inductive sensor for measuring the radial andaxial displacements of rotor[C]//6 th China Symposium on New Reactors and Research Reactors,Yili, China, 2006: 124-126. [18] Wang Kun, Zhang Lisheng, Le Yun, et al.Optimized differential self-inductance displacement sensor for magnetic bearings: design, analysis and experiment[J]. IEEE Sensors Journal, 2017, 17(14): 4378-4387. [19] 杨朝英, 徐龙祥. 磁轴承系统中差动变压器式位移传感器的研究[J]. 传感器技术, 2005, 24(9): 8-9, 12. Yang Chaoying, Xu Longxiang.Study on differential transformer displacement sensors for active magnetic bearings[J]. Journal of Transducer Technology, 2005, 24(9): 8-9, 12. [20] 陈伟, 张剀, 戴兴建. 基于AD698的半桥式电感位移传感器高灵敏度测量电路设计[J]. 电子技术应用, 2008, 34(7): 69-71, 75. Chen Wei, Zhang Kai, Dai Xingjian.Signal modulation circuit design of the half-bridge LVDT based on AD698 for high sensitivity applications[J]. Application of Electronic Technique, 2008, 34(7): 69-71, 75. [21] 张剀, 董金平, 戴兴建. AD698解调的电感位移传感器性能提升[J]. 仪表技术与传感器, 2010(9): 10-12. Zhang Kai, Dong Jinping, Dai Xingjian.Performance improvement of inductive displacement sensor based on AD698[J]. Instrument Technique and Sensor, 2010(9): 10-12. [22] Ren Zongqiang, Li Hongwei, Chen Xinwei, et al.Impedance modeling of self-inductive displacement sensor considering iron core reluctance and flux leakage[J]. IEEE Sensors Journal, 2022, 22(9): 8583-8595. [23] 叶品州, 李红伟, 于文涛, 等. 考虑材料非线性及涡流影响的径向电磁轴承等效磁路建模[J]. 电工技术学报, 2020, 35(9): 1858-1867. Ye Pinzhou, Li Hongwei, Yu Wentao, et al.Equivalent magnetic circuit modeling of radial active magnetic bearing considering material nonlinearity and eddy current effects[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 1858-1867. [24] 戈宝军, 杨子豪, 陶大军, 等. 计及磁路分布特性的电磁轴承解析模型建立与支撑性能影响因素研究[J]. 电工技术学报, 2023, 38(8): 2025-2035, 2085. Ge Baojun, Yang Zihao, Tao Dajun, et al.Establishment of analytical model of active magnetic bearing considering magnetic circuit distribution characteristics and study on influencing factors of support performance[J]. Transactions of China Electro- technical Society, 2023, 38(8): 2025-2035, 2085. [25] 李海毅, 李明明, 刘亚南, 等. 宽温域磁致伸缩位移传感器输出电压模型及特性分析[J]. 电工技术学报, 2023, 38(20): 5343-5353. Li Haiyi, Li Mingming, Liu Yanan, et al.Output voltage model and characteristic analysis of mag- netostrictive displacement sensor for wide operating temperature[J]. Transactions of China Electro- technical Society, 2023, 38(20): 5343-5353. [26] 张洪彬, 徐志科, 金龙, 等. 混合叠压圆筒型永磁直线振荡电机电磁特性分析[J]. 电工技术学报, 2023, 38(19): 5090-5100, 5140. Zhang Hongbin, Xu Zhike, Jin Long, et al.Electro- magnetic characteristics analysis of tubular permanent magnet linear oscillation actuator with hybrid lamination[J]. Transactions of China Electrotechnical Society, 2023, 38(19): 5090-5100, 5140. [27] 秦伟, 马育华, 张洁龙, 等. 不均匀气隙工况下轴向磁通永磁电动式磁悬浮电机的磁场与力特性分析[J]. 电工技术学报, 2023, 38(4): 889-902. Qin Wei, Ma Yuhua, Zhang Jielong, et al.Characteristic and magnetic field analysis of an axial flux permanent magnets maglev motor with non- uniformair gap[J]. Transactions of China Electro- technical Society, 2023, 38(4): 889-902. |
|
|
|