|
|
Online Detection of DC-Link Capacitance Parameters of Single-Phase Boost Power Factor Correction Converter Based on Improved Harmonic Injection |
Lu Weiguo1, Cao Qi1, Zhang Tingting1, Luo Tianzhu2, Zhang Huaiqing1 |
1. State Key Laboratory of Power Transmission Equipment Technology School of Electrical Engineering Chongqing University Chongqing 400044 China; 2. China Electronics Chip Technology Research Institute Chongqing 400060 China |
|
|
Abstract Boost PFC converter is commonly utilized in rectifier circuits due to its ability to achieve a high power factor and low input current distortion. For the single-phase boost PFC converter, large-capacity and low-priced aluminum electrolytic capacitors (AECs) are typically employed to balance the instantaneous power deviation between the input and the output. However, the failure-prone nature of electrolytic capacitors may result in system instability or even collapse. Therefore, the real-time detection of electrolytic capacitor status information, assessment of its service life, and timely replacement of the soon-to-be-failed electrolytic capacitor can provide an important technical guarantee for the reliability of PFC power supply operation. This paper proposes an improved "zero-crossing removal interval" harmonic injection method for online detection of capacitance parameters to solve current zero-crossing distortion caused by harmonic injection. Additionally, based on the harmonic response of the bus voltage, the harmonic capacitor current reconstruction is achieved, and a model for calculating the CR and RE parameters without capacitor current sampling is constructed. Firstly, the AC and DC input-output power action characteristics of the Boost PFC converter are fully utilized, i.e., the high harmonic current injection of the current control loop produces a high harmonic voltage splitting phenomenon on the output voltage. The two split harmonic voltage signals are employed to reconstruct the capacitor current; the capacitor's low-frequency impedance model is used to estimate CR; a mid-frequency domain harmonic capacitor parameter computation model is established to estimate the RE. In addition, the high harmonic current injection in the current loop inevitably results in an asymmetric zero-crossing distortion of the input current, directly affecting the accuracy of the capacitance parameter computation model. Consequently, the zero-crossing removal interval harmonic current injection method is employed to solve zero-crossing distortion caused by inter-area injection. The improved “zero-crossing removal interval” method avoids the reconstructed high-order capacitor current calculation error, enhancing CR and RE accuracy. Eighteen types of capacitor conditions are selected for simulation calculation, and 48 W/72 W/144 W Boost PFC experimental prototypes are established. The proposed detection method is verified under an input voltage of 60 V, a switching frequency of 100 kHz, and an output voltage of 120 V. The results demonstrated that the method exhibits high detection accuracy under symmetrical injection conditions with a 10% zero-crossing removal interval, a 10 V injection amplitude, and a 650 Hz frequency. Furthermore, the improved “zero-crossing removal interval” method can achieve parameter detection error within 5% under different loads (100 Ω, 200 Ω, and 300 Ω) and capacitor conditions (196 mΩ/412 μF and 216 mΩ/617 μF), regardless of light or heavy loads. This paper presents the following conclusions. (1) The proposed method considers the impact of current on distortion caused by harmonic injection. A “zero-crossing removal interval” harmonic injection method improves the accuracy of capacitance parameter detection. (2) In the “zero-crossing removal interval” method, the capacitor current is obtained through algorithmic reconstruction, which avoids high-precision capacitor current sampling. The harmonic injection is achieved by the control algorithm without additional hardware equipment. (3) The proposed capacitance parameter calculation model is derived based on the AC-DC power balance, making it straightforward to extend to similar AC-DC converters.
|
Received: 18 April 2024
|
|
|
|
|
[1] 王议锋, 王忠杰, 陈博, 等. 基于耦合电感的交错Boost变换器性能优化[J]. 电工技术学报, 2022, 37(8): 2097-2106. Wang Yifeng, Wang Zhongjie, Chen Bo, et al.Performance optimization of interleaved Boost based on coupled inductors[J]. Transactions of China Elec-trotechnical Society, 2022, 37(8): 2097-2106. [2] 林通, 江平, 姚佳. 一种基于耦合电感的零电流纹波功率因数校正变换器[J]. 电工技术学报, 2022, 37(18): 4732-4744. Lin Tong, Jiang Ping, Yao Jia.A zero current ripple tapped inductor power factor correction converter[J]. Transactions of China Electrotechnical Society, 2022, 37(18): 4732-4744. [3] 王立乔, 陈建医, 程超然, 等. 单级单相无电解电容Buck-Boost逆变器[J]. 电工技术学报, 2023, 38(24): 6768-6781. Wang Liqiao, Chen Jianyi, Cheng Chaoran, et al.A single-stage single-phase Buck-Boost inverter without electrolytic capacitor[J]. Transactions of China Elec-trotechnical Society, 2023, 38(24): 6768-6781. [4] 陶星澳, 王丰, 卓放. 部分功率直流变换器研究综述[J]. 电工技术学报, 2024, 39(10): 3021-3037. Tao Xing’ao, Wang Feng, Zhuo Fang.Review of partial power DC converter research[J]. Transactions of China Electrotechnical Society, 2024, 39(10): 3021-3037. [5] Lu Weiguo, Lang Shuang, Zhou Luowei, et al.Improvement of stability and power factor in PCM controlled boost PFC converter with hybrid dynamic compensation[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62(1): 320-328. [6] 樊靖轩, 施佳楠, 徐子梁, 等. 基于GaN的开关线性复合高速随动脉冲负载直流变换器[J]. 电工技术学报, 2024, 39(6): 1818-1829. Fan Jingxuan, Shi Jianan, Xu Ziliang, et al.GaN-based switched linear composite high-speed follow-up pulse load DC converter[J]. Transactions of China Electrotechnical Society, 2024, 39(6): 1818-1829. [7] 皇金锋, 李林鸿, 任舒欣, 等. 考虑滤波电容等效串联电阻的输出本质安全型Buck-Boost变换器分析与设计[J]. 电工技术学报, 2021, 36(8): 1658-1670. Huang Jinfeng, Li Linhong, Ren Shuxin, et al.Analysis and design of an intrinsically safe Buck-Boost converter on considering of the filter capacitor with equivalent series resistance[J]. Transactions of China Electrotechnical Society, 2021, 36(8): 1658-1670. [8] Soliman H, Wang Huai, Blaabjerg F.A review of the condition monitoring of capacitors in power elec-tronic converters[J]. IEEE Transactions on Industry Applications, 2016, 52(6): 4976-4989. [9] 罗天柱. 单相Boost PFC变换器的直流母线电容参数检测方法研究[D]. 重庆: 重庆大学, 2022. Luo Tianzhu.Research on DC bus capacitance parameter detection method of single-phase Boost PFC converter[D]. Chongqing: Chongqing University, 2022. [10] Pu Xingsi, Nguyen T H, Lee D C, et al.Fault diagnosis of DC-link capacitors in three-phase AC/DC PWM converters by online estimation of equivalent series resistance[J]. IEEE Transactions on Industrial Electronics, 2013, 60(9): 4118-4127. [11] Amaral A M R, Marques Cardoso A J. Using Newton-raphson method to estimate the condition of aluminum electrolytic capacitors[C]//2007 IEEE International Symposium on Industrial Electronics, Vigo, Spain, 2007: 827-832. [12] Tsang K M, Chan W L.Simple method for measuring the equivalent series inductance and resistance of electrolytic capacitors[J]. IET Power Electronics, 2010, 3(4): 465. [13] Amaral A M R, Marques Cardoso A J. A simple offline technique for evaluating the condition of aluminum-electrolytic-capacitors[J]. IEEE Transa-ctions on Industrial Electronics, 2009, 56(8): 3230-3237. [14] Amaral A M R, Marques Cardoso A J. An automatic technique to obtain the equivalent circuit of aluminum electrolytic capacitors[C]//2008 34th Annual Con-ference of IEEE Industrial Electronics, Orlando, FL, USA, 2008: 539-544. [15] Yao Kai, Tang Weijie, Bi Xiaopeng, et al.An online monitoring scheme of DC-link capacitor’s ESR and C for a Boost PFC converter[J]. IEEE Transactions on Power Electronics, 2016, 31(8): 5944-5951. [16] 罗丹, 陈民铀, 赖伟, 等. 基于Haar小波变换重构开关序列的MMC子模块电容值在线监测方法[J]. 电工技术学报, 2022, 37(20): 5278-5289. Luo Dan, Chen Minyou, Lai Wei, et al.Online monitoring method for sub-module capacitance in modular multilevel converter based on Haar wavelet transform reconstruction switch sequence[J]. Transa-ctions of China Electrotechnical Society, 2022, 37(20): 5278-5289. [17] 辛熙锴, 马柯, 蔡旭. 工频周期四点电压采样的MMC子模块电容值在线监测方法[J]. 中国电机工程学报, 2021, 41(11): 3896-3904. Xin Xikai, Ma Ke, Cai Xu.Online monitoring for sub-module capacitance in modular multilevel con-verter with four sampling points of capacitor voltage[J]. Proceedings of the CSEE, 2021, 41(11): 3896-3904. [18] 林晓婉, 代锋, 刘沈全, 等. 含LCC-HVDC的交直流混联电网统一谐波状态估计方法[J]. 电力系统自动化, 2022, 46(13): 94-103. Lin Xiaowan, Dai Feng, Liu Shenquan, et al.Unified harmonic state estimation method for AC/DC hybrid power grid with LCC-HVDC[J]. Automation of Electric Power Systems, 2022, 46(13): 94-103. [19] Laadjal K, Sahraoui M, Cardoso A J M, et al. Online estimation of aluminum electrolytic-capacitor para-meters using a modified prony’s method[J]. IEEE Transactions on Industry Applications, 2018, 54(5): 4764-4774. [20] 蒋兴良, 周文轩, 董莉娜, 等. 基于旋转圆柱三电极阵列的覆冰测量方法[J]. 电工技术学报, 2024, 39(5): 1524-1535. Jiang Xingliang, Zhou Wenxuan, Dong Lina, et al.Ice coating measurement method based on rotating cylindrical three-electrode array[J]. Transactions of China Electrotechnical Society, 2024, 39(5): 1524-1535. [21] Zhao Zhaoyang, Lu Weiguo, Davari P, et al.An online parameters monitoring method for output capacitor of buck converter based on large-signal load transient trajectory analysis[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(4): 4004-4015. [22] 孙鹏菊, 龚灿, 杜雄, 等. 一种大功率交流变流器直流母线电容等效串联电阻的在线监测方法[J]. 中国电机工程学报, 2017, 37(17): 5134-5142, 5233. Sun Pengju, Gong Can, Du Xiong, et al.An online monitoring scheme of equivalent series resistance for DC-link capacitor of high-power AC converter[J]. Proceedings of the CSEE, 2017, 37(17): 5134-5142, 5233. [23] Lu Weiguo, Lu Xuemei, Han Jinxin, et al.Online estimation of ESR for DC-link capacitor of Boost PFC converter using wavelet transform based time-frequency analysis method[J]. IEEE Transactions on Power Electronics, 2020, 35(8): 7755-7764. [24] Ahmeid M, Armstrong M, Gadoue S, et al.Real-time parameter estimation of DC-DC converters using a self-tuned Kalman filter[J]. IEEE Transactions on Power Electronics, 2017, 32(7): 5666-5674. [25] Li B X, Low K S.Low sampling rate online para-meters monitoring of DC-DC converters for predictive-maintenance using biogeography-based optimi-zation[J]. IEEE Transactions on Power Electronics, 2016, 31(4): 2870-2879. [26] Sun Pengju, Gong Can, Du Xiong, et al.Online condition monitoring for both IGBT module and DC-link capacitor of power converter based on short-circuit current simultaneously[J]. IEEE Transactions on Industrial Electronics, 2017, 64(5): 3662-3671. [27] Kim M, Sul S K, Lee J.Condition monitoring of DC-link capacitors in drive system for electric vehicles[C]//2012 IEEE Vehicle Power and Pro-pulsion Conference, Seoul, Korea (South), 2012: 633-637. [28] Gupta Y, Ahmad M W, Narale S, et al.Health estimation of individual capacitors in a bank with reduced sensor requirements[J]. IEEE Transactions on Industrial Electronics, 2019, 66(9): 7250-7259. [29] Ahmad M W, Agarwal N, Kumar P N, et al.Low-frequency impedance monitoring and corresponding failure criteria for aluminum electrolytic capacitors[J]. IEEE Transactions on Industrial Electronics, 2017, 64(7): 5657-5666. [30] Meng Jinlei, Chen E X, Ge S J.Online E-cap condition monitoring method based on state obser-ver[C]//2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC), Shenzhen, China, 2018: 1-6. [31] Sun Jian.On the zero-crossing distortion in single-phase PFC converters[J]. IEEE Transactions on Power Electronics, 2004, 19(3): 685-692. |
|
|
|