|
|
Dynamic Model and Multi-Objective Control Strategy of Half-Wave Shaping Based Modular Multilevel Converter |
Sun Yuwei, Tao Cong, Fu Chao, Zhang Zelin, Wang Chen, Wang Yi |
Hebei Key Laboratory of Distributed Energy Storage and Microgrid North China Electric Power University Baoding 071003 China |
|
|
Abstract The traditional modular multilevel converter (MMC) has drawbacks such as many submodules, large volume and weight, and high cost. The lightweight MMC topologies have become a research hotspot. Half-Wave Shaping MMC (HWS-MMC) is a new lightweight hybrid multilevel converter that integrates the merits of the two-level topology and the MMC topology. The HWS-MMC can reduce the module numbers and voltage stress since the multilevel arm only needs to modulate part of the sinusoidal waveform. In existing studies, phase-shift modulation and third-order harmonic injection methods for energy balance issues of the wide-range operation of HWS-MMC are based on the inverter operation with supply ideal DC voltages supply, and no detailed multi-objective control design has been conducted. Therefore, this paper studies the dynamic model and multi-objective control strategy of HWS-MMC. Firstly, the topology and working principle of HWS-MMC are introduced, and the energy balance mechanism and phase-shift wide-range modulation method are clarified by deriving the arm energy accumulation expression. The mathematical models of internal and external variables are established for HWS-MMC, including grid current dynamics, submodule capacitor voltages, and DC bus capacitor voltage. Then, a fully averaged dynamic model without switching characteristics is obtained and linearized using the multi-scale switching period averaging technique. An overall control strategy is systematically established with the objectives of grid current control, two-stage DC voltage control, and energy balancing control between phases and within an arm. The design method of the multi-loop controllers and commutation control logic are also given. An HWS-MMC system is built on the RT-Lab platform. Experiments are conducted under the grid voltage disturbance, load disturbance, and reactive power regulations. The waveforms, including the AC voltage and current, the DC bus and submodule capacitor voltages, the modulation coefficient and phase-shift angle, and the active and reactive power, are given. The results show that the modulation coefficient and phase-shift angle are adjusted accordingly through the multi-loop control, ensuring the stability of the DC bus voltage and the submodule capacitor voltages. In addition, voltage balancing between and within phases is achieved. The half-sinusoidal multilevel waveform and six-pulsation DC bus current are consistent with the theoretical analysis. The following conclusions can be drawn. (1) The AC side characteristics of HWS-MMC are similar to traditional VSC, the characteristics of the internal module capacitors are similar to MMC, and the DC bus characteristics are similar to the six-pulsation rectifier. (2) The dynamics of the DC bus capacitor voltage and submodule capacitor voltage are independent. (3) The multi-control objectives are achieved with additional phase-shifting control and the submodule modulating wave correction.
|
Received: 22 March 2024
|
|
|
|
|
[1] 杨晓峰, 林智钦, 郑琼林, 等. 模块组合多电平变换器的研究综述[J]. 中国电机工程学报, 2013, 33(6): 1-14. Yang Xiaofeng, Lin Zhiqin, Zheng Qionglin, et al.A review of modular multilevel converters[J]. Pro- ceedings of the CSEE, 2013, 33(6): 1-14. [2] 侯玉超, 郭祺, 涂春鸣, 等. 面向输出性能优化的高低频混合型模块化多电平变换器及其调控策略[J]. 电工技术学报, 2024, 39(14):4467-4479. Hou Yuchao, Guo Qi, Tu Chunming, et al.A high and low frequency hybrid modular multilevel converter for output performance optimization and its control strategy[J]. Transactions of China Electrotechnical Society, 2024, 39(14): 4467-4479. [3] 蔡旭, 杨仁炘, 周剑桥, 等. 海上风电直流送出与并网技术综述[J]. 电力系统自动化, 2021, 45(21): 2-22. Cai Xu, Yang Renxin, Zhou Jianqiao, et al.Review on offshore wind power integration via DC trans- mission[J]. Automation of Electric Power Systems, 2021, 45(21): 2-22. [4] 李子欣, 徐飞, 赵成勇, 等. 面向高压直流输电的电流源型主动换相换流器研究综述[J]. 中国电机工程学报, 2021, 41(3): 1053-1068. Li Zixin, Xu Fei, Zhao Chengyong, et al.Research review of current-source type actively commutated converter for high voltage direct current transmission systems[J]. Proceedings of the CSEE, 2021, 41(3): 1053-1068. [5] 樊强, 俞永杰, 夏嘉航, 等. 低容值半桥型模块化多电平变换器直流故障辅助清除策略[J]. 电工技术学报, 2022, 37(14): 3713-3722. Fan Qiang, Yu Yongjie, Xia Jiahang, et al.Auxiliary strategy for DC fault clearing of low capacitance half-bridge modular multilevel converter[J]. Transa- ctions of China Electrotechnical Society, 2022, 37(14): 3713-3722. [6] 任鹏, 涂春鸣, 侯玉超, 等. 基于Si和SiC器件的混合型级联多电平变换器及其调控优化方法[J]. 电工技术学报, 2023, 38(18): 5017-5028. Ren Peng, Tu Chunming, Hou Yuchao, et al.Research on a hybrid cascaded multilevel converter based on Si and SiC device and its control optimization method[J]. Transactions of China Electrotechnical Society, 2023, 38(18): 5017-5028. [7] 许建中, 李钰, 陆锋, 等. 降低MMC子模块电容电压纹波幅值的方法综述[J]. 中国电机工程学报, 2019, 39(2): 571-584. Xu Jianzhong, Li Yu, Lu Feng, et al.A review of suppression methods for sub-module capacitor voltage ripple amplitudes in modular multilevel converters[J]. Proceedings of the CSEE, 2019, 39(2): 571-584. [8] Merlin M M C, Green T C, Mitcheson P D, et al. A new hybrid multi-level voltage-source converter with DC fault blocking capability[C]//9th IET International Conference on AC and DC Power Transmission (ACDC 2010), London, 2010: 1-5. [9] Adam G P, Finney S J, Williams B W, et al.Network fault tolerant voltage-source-converters for high- voltage applications[C]//9th IET International Con- ference on AC and DC Power Transmission (ACDC 2010), London, 2010: 1-5. [10] Feldman R, Tomasini M, Amankwah E, et al.A hybrid modular multilevel voltage source converter for HVDC power transmission[J]. IEEE Transactions on Industry Applications, 2013, 49(4): 1577-1588. [11] Adam G P, Abdelsalam I A, Ahmed K H, et al.Hybrid multilevel converter with cascaded H-bridge cells for HVDC applications: operating principle and scala- bility[J]. IEEE Transactions on Power Electronics, 2015, 30(1): 65-77. [12] 王琛, 陶建业, 王毅, 等. 桥臂复用型模块化多电平换流器的拓扑及控制研究[J]. 中国电机工程学报, 2022, 42(9): 3373-3384. Wang Chen, Tao Jianye, Wang Yi, et al.Research on topology and control of arm multiplexing modular multilevel converter[J]. Proceedings of the CSEE, 2022, 42(9): 3373-3384. [13] 李宇薇, 王毅, 高玉华, 等. 桥臂复用模块化多电平变流器单极接地故障无闭锁穿越及能量均衡[J]. 电工技术学报, 2025, 40(1): 190-202. Li Yuwei, Wang Yi, Gao Yuhua,et al.Pole-to-ground fault riding-through and energy balance of arm- multiplexing modular multilevel converter[J]. Transa- ctions of China Electrotechnical Society, 2025, 40(1): 190-202. [14] Lan Jianxi, Chen Wu, Li Xin, et al.A three-phase multiplexing arm modular multilevel converter with high power density and small volume[J]. IEEE Transactions on Power Electronics, 2022, 37(12): 14587-14600. [15] Fan Shiyuan, Chen Cong, Yang Heya, et al.A cost- effective and DC-fault tolerant alternate arm con- verter with wide range voltage adaptability[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10(6): 6673-6686. [16] Patro S K, Shukla A, Ghat M B.Hybrid series converter: a DC fault-tolerant HVDC converter with wide operating range[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(1): 765-779. [17] 高玉华, 王琛, 王毅, 等. 基于半波交替的轻型化MMC拓扑及控制策略[J]. 电力系统自动化, 2023, 47(17): 149-159. Gao Yuhua, Wang Chen, Wang Yi, et al.Topology and control strategy of light-weight modular multi- level converter with half-wave alternating[J]. Auto- mation of Electric Power Systems, 2023, 47(17): 149-159. [18] Huang Ming, Li Weilin, Zou Jianlong, et al.Analysis and design of a novel hybrid modular multilevel converter with time-sharing alternative arm con- verter[J]. IEEE Transactions on Industrial Electronics, 2024, 71(1): 14-26. [19] Merlin M M C, Green T C. Cell capacitor sizing in multilevel converters: cases of the modular multilevel converter and alternate arm converter[J]. IET Power Electronics, 2015, 8(3): 350-360. [20] 孙玉巍, 李永刚, 刘教民, 等. 级联式电力电子变压器协调控制策略[J]. 中国电机工程学报, 2018, 38(5): 1290-1300. Sun Yuwei, Li Yonggang, Liu Jiaomin, et al.Coor- dinative control strategy for cascaded power elec- tronic transformer[J]. Proceedings of the CSEE, 2018, 38(5): 1290-1300. [21] (美) Richard C. Dorf, (美) Robert H. Bishop著. 谢红卫. 现代控制系统[M]. 2版. 北京: 电子工业出版社, 2015. [22] 武鸿, 王跃, 薛英林, 等. 适用多功率的最近电平调制下MMC子模块开路故障诊断策略[J]. 电工技术学报, 2024, 39(1): 233-245, 302. Wu Hong, Wang Yue, Xue Yinglin, et al.A diagnosis strategy for open-circuit submodule faults in MMCs under nearst level modulation suitable for different powers[J]. Transactions of China Electrotechnical Society, 2024, 39(1): 233-245,302. [23] 徐政. 柔性直流输电系统[M]. 2版. 北京: 机械工业出版社, 2017. |
|
|
|