[1] 蔡旭, 杨仁炘, 周剑桥, 等. 海上风电直流送出与并网技术综述[J]. 电力系统自动化, 2021, 45(21): 2-22.
Cai Xu, Yang Renxin, Zhou Jianqiao, et al.Review on offshore wind power integration via DC transmission[J]. Automation of Electric Power Systems, 2021, 45(21): 2-22.
[2] 马富艺龙, 辛焕海, 刘晨曦, 等. 新能源基地柔性直流送出系统小扰动电压支撑强度评估[J]. 电工技术学报, 2023, 38(21): 5758-5770, 5938.
Ma Fuyilong, Xin Huanhai, Liu Chenxi, et al.Small-disturbance system voltage support strength assessment method for renewables VSC-HVDC delivery system[J]. Transactions of China Electrotechnical Society, 2023, 38(21): 5758-5770, 5938.
[3] 韩民晓, 翟冬玲, 唐晓骏. 连接低惯量系统的柔性直流输电模型预测控制[J]. 电工技术学报, 2017, 32(22): 198-206.
Han Minxiao, Zhai Dongling, Tang Xiaojun.Model predictive control of voltage source converter-HVDC connected to low inertia system[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 198-206.
[4] 束洪春, 邵宗学, 赵伟, 等. 含柔性直流的交直流混联电力系统紧急频率控制研究[J]. 电工技术学报, 2023, 38(20): 5590-5604.
Shu Hongchun, Shao Zongxue, Zhao Wei, et al.Research on emergency power control of AC-DC hybrid power system with flexible DC[J]. Transactions of China Electrotechnical Society, 2023, 38(20): 5590-5604.
[5] 邵冰冰, 贾焦心. 弱受端交流电网下VSC-HVDC系统的功率解耦控制设计[J]. 电机与控制学报, 2022, 26(10): 56-65.
Shao Bingbing, Jia Jiaoxin.Power decoupling control design of the VSC-HVDC under the weak receiving AC grid conditions[J]. Electric Machines and Control, 2022, 26(10): 56-65.
[6] 孙华东, 王宝财, 李文锋, 等. 高比例电力电子电力系统频率响应的惯量体系研究[J]. 中国电机工程学报, 2020, 40(16): 5179-5192.
Sun Huadong, Wang Baocai, Li Wenfeng, et al.Research on inertia system of frequency response for power system with high penetration electronics[J]. Proceedings of the CSEE, 2020, 40(16): 5179-5192.
[7] 王博, 杨德友, 蔡国伟. 高比例新能源接入下电力系统惯量相关问题研究综述[J]. 电网技术, 2020, 44(8): 2998-3007.
Wang Bo, Yang Deyou, Cai Guowei.Review of research on power system inertia related issues in the context of high penetration of renewable power generation[J]. Power System Technology, 2020, 44(8): 2998-3007.
[8] Andreasson M, Wiget R, Dimarogonas D V, et al.Distributed frequency control through MTDC transmission systems[J]. IEEE Transactions on Power Systems, 2017, 32(1): 250-260.
[9] Liu Hongzhi, Chen Zhe.Contribution of VSC-HVDC to frequency regulation of power systems with offshore wind generation[J]. IEEE Transactions on Energy Conversion, 2015, 30(3): 918-926.
[10] 谢小荣, 苏开元, 邱银锋, 等. 海上风电-柔直送端系统频率控制研究现状及建议[J]. 中国海上油气, 2023, 35(1): 136-147.
Xie Xiaorong, Su Kaiyuan, Qiu Yinfeng, et al.Frequency control of VSC-HVDC transmission system for offshore wind farms: research status and suggestions[J]. China Offshore Oil and Gas, 2023, 35(1): 136-147.
[11] 朱介北, 史美琦, 张利, 等. 基于超级电容的海上风电柔直送出系统协调惯量支撑策略[J]. 电网技术, 2022, 46(8): 2938-2952.
Zhu Jiebei, Shi Meiqi, Zhang Li, et al.Supercapacitor-based coordinated inertia support strategy for offshore wind farms integration via VSC-HVDC[J]. Power System Technology, 2022, 46(8): 2938-2952.
[12] Lin C H, Wu Yuankang. Overview of frequency-control technologies for a VSC-HVDC-integrated wind farm[J]. IEEE Access, 2829, 9: 112893-112921.
[13] 杨仁炘, 张琛, 蔡旭. 具有频率实时镜像和自主电网同步能力的风场-柔直系统控制方法[J]. 中国电机工程学报, 2017, 37(2): 496-506.
Yang Renxin, Zhang Chen, Cai Xu.Control of VSC-HVDC with real-time frequency mirroring and self-synchronizing capability for wind farm integration[J]. Proceedings of the CSEE, 2017, 37(2): 496-506.
[14] Liu Xudan, Lindemann A.Control of VSC-HVDC connected offshore windfarms for providing synthetic inertia[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2018, 6(3): 1407-1417.
[15] 李宇骏, 杨勇, 李颖毅, 等. 提高电力系统惯性水平的风电场和VSC-HVDC协同控制策略[J]. 中国电机工程学报, 2014, 34(34): 6021-6031.
Li Yujun, Yang Yong, Li Yingyi, et al.Coordinated control of wind farms and VSC-HVDC to improve inertia level of power system[J]. Proceedings of the CSEE, 2014, 34(34): 6021-6031.
[16] Li Yujun, Xu Zhao, Østergaard J, et al.Coordinated control strategies for offshore wind farm integration via VSC-HVDC for system frequency support[J]. IEEE Transactions on Energy Conversion, 2017, 32(3): 843-856.
[17] 江守其, 徐亚男, 李国庆, 等. 提升海上风电经柔直联网系统频率稳定性的协调控制策略[J]. 电力自动化设备, 2023, 43(9): 194-201.
Jiang Shouqi, Xu Yanan, Li Guoqing, et al.Coordinated control strategy for improving frequency stability of MMC-HVDC connecting offshore wind power[J]. Electric Power Automation Equipment, 2023, 43(9): 194-201.
[18] Lu Zongxiang, Ye Yida, Qiao Ying.An adaptive frequency regulation method with grid-friendly restoration for VSC-HVDC integrated offshore wind farms[J]. IEEE Transactions on Power Systems, 2019, 34(5): 3582-3593.
[19] Peng Xiaotao, Yao Wei, Yan Cai, et al.Two-stage variable proportion coefficient based frequency support of grid-connected DFIG-WTs[J]. IEEE Transactions on Power Systems, 2020, 35(2): 962-974.
[20] 周际城, 彭晓涛, 罗鹏, 等. 基于复转矩系数法的双馈风机次同步控制相互作用阻尼特性研究[J]. 电网技术, 2020, 44(4): 1247-1257.
Zhou Jicheng, Peng Xiaotao, Luo Peng, et al.Study on sub-synchronous control interaction damping characteristics of doubly-fed induction generator based on complex torque coefficient method[J]. Power System Technology, 2020, 44(4): 1247-1257.
[21] Kolesnikov A, Veselov G, Popov A, et al.A synergetic approach to the modeling of power electronic systems[C]//COMPEL 7th Workshop on Computers in Power Electronics, Blacksburg, VA, USA, 2000: 259-262.
[22] 李龙源, 付瑞清, 吕晓琴, 等. 接入弱电网的同型机直驱风电场单机等值建模[J]. 电工技术学报, 2023, 38(3): 712-725.
Li Longyuan, Fu Ruiqing, Lü Xiaoqin, et al.Single machine equivalent modeling of weak grid connected wind farm with same type PMSGs[J]. Transactions of China Electrotechnical Society, 2023, 38(3): 712-725.
[23] Miller N W, Sanchez-Gasca J J, Price W W, et al. Dynamic modeling of GE 1.5 and 3.6 MW wind turbine-generators for stability simulations[C]//2003 IEEE Power Engineering Society General Meeting, Toronto, ON, Canada, 2003: 1977-1983.
[24] Kundur P, Balu N J, Lauby M G.Power System Stability and Control[M]. New York: McGraw-Hill, 1994.
[25] Zhou Guoliang, Shi Xinchun.Research on the model and control strategy of one multi-module-converter based VSC-HVDC[C]//2007 IEEE International Symposium on Industrial Electronics, Vigo, Spain, 2007: 759-763.
[26] Anderson P M, Fouad A A.Power System Control and Stability[M]. 2nd ed. Piscataway: IEEE Press, 2003. |