|
|
Behavior Model of High-Voltage SiC MOSFET’s Short-Circuit Fault Based on Device Physics |
Wu Yifan1, Li Chi1, Xu Yunfei2, Zheng Zedong1, Hao Yi2 |
1. State Key Laboratory of Power System Operation and Control Tsinghua University Beijing 100084 China; 2. State Grid Smart Grid Research Institute Co. Ltd Beijing 102209 China |
|
|
Abstract The short-circuit ruggedness of silicon carbide (SiC) MOSFETs represents a significant challenge that impedes their widespread adoption in high-voltage applications. Developing effective short-circuit protection strategies in domestic high-voltage SiC MOSFETs is hampered by a lack of robust technical expertise and empirical experience. Furthermore, the absence of fast and accurate simulation models presents a fundamental obstacle to advancing research on the application of domestic high-voltage SiC MOSFETs. Traditional behavioral models focus on fitting these devices’ static and dynamic characteristics but fail to simulate fault conditions adequately. Recently, several models have been proposed for short-circuit scenarios. However, these models exhibit limitations, including low adaptability for high-voltage devices, insufficient universality, and inefficient parameter extraction. This paper introduces a behavioral model for high-voltage SiC MOSFETs, which incorporates practical physical characteristics. The proposed model can accurately simulate the device's behavior-such as voltage and current dynamics-throughout a short-circuit fault event. The behavioral model comprises five primary components: a controlled current source (ICH) for calculating the current flowing through the channel, a controlled current source (ILEAK) for assessing the leakage current under high junction temperature conditions, a diode (D) representing the device's body diode, capacitors (CGS, CGD and CDS) for the junction capacitances, and a resistor (RD) denoting the total resistance of the drift layer and JFET region of the device. In high-voltage devices, the resistances associated with the drift layer and JFET region constitute a significantly large proportion of the total on-resistance compared to devices rated below 1.2 kV. The increased resistance markedly influences the device's behavior during short-circuit faults. Consequently, RD is carefully calculated based on the practical structure of high-voltage SiC MOSFETs and the current path during short-circuit events at the cell level. The model’s parameters are categorized into four types, each with detailed extraction methods. Furthermore, key physical parameters that are challenging to measure-such as intrinsic carrier concentration (ni), threshold voltage (VT), and carrier mobility (μ)-are calculated based on semiconductor physics principles. The strong physical significance of the model's components and the parameters enhances the universality and portability of the proposed model. A 6.5 kV/400 A SiC MOSFET produced by the State Grid Smart Grid Research Institute Co. Ltd is modeled. The model is developed, and short-circuit test simulations are conducted using Matlab/Simulink. A short-circuit test experimental platform is established for the selected device. Short-circuit tests are performed under a short-circuit duration (tSC) of 2.5 μs and DC-bus voltages (VDC) of 3 300 V and 2 470 V. The high consistency between the simulated and experimental waveforms indicates that the presented model effectively simulates the behavior of high-voltage SiC MOSFETs during short-circuit faults. The relative errors of the current rise rate and peak short-circuit current are less than 2.20% and 0.83%. Additionally, the relative errors of simulated peak currents with the low-voltage models are 7.58% and 5.89% under VDC=3 300 V and VDC=2 470 V, respectively, seven times those with the proposed model.
|
Received: 20 June 2024
|
|
|
|
|
[1] Kimoto T.Material science and device physics in SiC technology for high-voltage power devices[J]. Japanese Journal of Applied Physics, 2015, 54(4): 040103. [2] 盛况, 任娜, 徐弘毅. 碳化硅功率器件技术综述与展望[J]. 中国电机工程学报, 2020, 40(6): 1741-1753. Sheng Kuang, Ren Na, Xu Hongyi.A recent review on silicon carbide power devices technologies[J]. Proceedings of the CSEE, 2020, 40(6): 1741-1753. [3] 刘基业, 郑泽东, 李驰, 等. 电压自平衡碳化硅MOSFET间接串联功率模块[J]. 电工技术学报, 2023, 38(7): 1900-1909. Liu Jiye, Zheng Zedong, Li Chi, et al.An indirect series-connected SiC MOSFET power module with voltage self-balance[J]. Transactions of China Elec- trotechnical Society, 2023, 38(7): 1900-1909. [4] Zhang Lei, Yuan Xibo, Wu Xiaojie, et al.Perfor- mance evaluation of high-power SiC MOSFET modules in comparison to Si IGBT modules[J]. IEEE Transactions on Power Electronics, 2019, 34(2): 1181-1196. [5] 朱小全, 刘康, 叶开文, 等. 基于SiC器件的隔离双向混合型LLC谐振变换器[J]. 电工技术学报, 2022, 37(16): 4143-4154. Zhu Xiaoquan, Liu Kang, Ye Kaiwen, et al.Isolated bidirectional hybrid LLC converter based on SiC MOSFET[J]. Transactions of China Electrotechnical Society, 2022, 37(16): 4143-4154. [6] 任鹏, 涂春鸣, 侯玉超, 等. 基于Si和SiC器件的混合型级联多电平变换器及其调控优化方法[J]. 电工技术学报, 2023, 38(18): 5017-5028. Ren Peng, Tu Chunming, Hou Yuchao, et al.Research on a hybrid cascaded multilevel converter based on Si and SiC device and its control optimization method[J]. Transactions of China Electrotechnical Society, 2023, 38(18): 5017-5028. [7] 黄天琪, 刘永前. 基于电-热-结构耦合分析的SiC MOSFET可靠性研究[J]. 电气技术, 2024, 25(8): 27-34. Huang Tianqi, Liu Yongqian.Reliability study of SiC MOSFET based on electro-thermo-structural coupling analysis[J]. Electrical Engineering, 2024, 25(8): 27-34. [8] Li Haoran, Zhang Zhiliang, Wang Shengdong, et al.A 300-kHz 6.6-kW SiC bidirectional LLC onboard charger[J]. IEEE Transactions on Industrial Elec- tronics, 2020, 67(2): 1435-1445. [9] 张栋, 范涛, 温旭辉, 等. 电动汽车用高功率密度碳化硅电机控制器研究[J]. 中国电机工程学报, 2019, 39(19): 5624-5634, 5890. Zhang Dong, Fan Tao, Wen Xuhui, et al.Research on high power density SiC motor drive controller[J]. Proceedings of the CSEE, 2019, 39(19): 5624-5634, 5890. [10] 付永升, 任海鹏, 李翰山, 等. SiC-MOSFET与Si-IGBT混合开关车载双向充电器中线桥臂设计及控制[J]. 中国电机工程学报, 2020, 40(19): 6330-6345. Fu Yongsheng, Ren Haipeng, Li Hanshan, et al.Neutral leg design and control of electric vehicle on-board bidirectional charger based on SiC- MOSFET and Si-IGBT hybrid devices[J]. Pro- ceedings of the CSEE, 2020, 40(19): 6330-6345. [11] 胡嘉豪, 王英伦, 代豪豪, 等. SiC MOSFET器件栅氧可靠性研究综述[J]. 电源学报, 2024, 22(4): 1-11. Hu Jiahao, Wang Yinglun, Dai Haohao, et al.Review on gate oxide reliability of SiC MOSFET devices[J]. Journal of Power Supply, 2024, 22(4): 1-11. [12] 薄强, 王丽芳, 张玉旺, 等. 应用于无线充电系统的SiC MOSFET关断特性分析[J]. 电力系统自动化, 2021, 45(15): 150-157. Bo Qiang, Wang Lifang, Zhang Yuwang, et al.Analysis of turn-off characteristics of SiC MOSFET applied to wireless charging system[J]. Automation of Electric Power Systems, 2021, 45(15): 150-157. [13] 金晓行, 李士颜, 田丽欣, 等. 6.5kV高压全SiC功率MOSFET模块研制[J]. 中国电机工程学报, 2020, 40(6): 1753-1759. Jin Xiaoxing, Li Shiyan, Tian Lixin, et al.Fabrication of 6.5kV high-voltage full SiC power MOSFET modules[J]. Proceedings of the CSEE, 2020, 40(6): 1753-1759. [14] Ceccarelli L, Reigosa P D, Iannuzzo F, et al.A survey of SiC power MOSFETs short-circuit robustness and failure mode analysis[J]. Microelectronics Reliability, 2017, 76: 272-276. [15] Sun Keyao, Wang Jun, Burgos R, et al.Design, analysis, and discussion of short circuit and overload gate-driver dual-protection scheme for 1.2-kV, 400-a SiC MOSFET modules[J]. IEEE Transactions on Power Electronics, 2020, 35(3): 3054-3068. [16] 王占扩, 童朝南, 黄伟超. SiC MOSFET短路特性及过流保护研究[J]. 中国电机工程学报, 2020, 40(18): 5751-5760. Wang Zhankuo, Tong Chaonan, Huang Weichao.Research on short-circuit characteristics and over- current protection of SiC MOSFET[J]. Proceedings of the CSEE, 2020, 40(18): 5751-5760. [17] 文阳, 杨媛, 宁红英, 等. SiC MOSFET短路保护技术综述[J]. 电工技术学报, 2022, 37(10): 2538-2548. Wen Yang, Yang Yuan, Ning Hongying, et al.Review on short-circuit protection technology of SiC MOSFET[J]. Transactions of China Electrotechnical Society, 2022, 37(10): 2538-2548. [18] Awwad A E, Dieckerhoff S.Short-circuit evaluation and overcurrent protection for SiC power MOSFETs[C]//2015 17th European Conference on Power Electronics and Applications (EPE'15 ECCE-Europe), Geneva, Switzerland, 2015: 1-9. [19] 李鑫, 罗毅飞, 史泽南, 等. 一种基于物理的SiC MOSFET改进电路模型[J]. 电工技术学报, 2022, 37(20): 5214-5226 . Li Xin, Luo Yifei, Shi Zenan, et al.An improved physics-based circuit model for SiC MOSFET[J]. Transactions of China Electrotechnical Society, 2022, 37(20): 5214-5226. [20] Stark R, Tsibizov A, Nain N, et al.Accuracy of three interterminal capacitance models for SiC power MOSFETs under fast switching[J]. IEEE Transactions on Power Electronics, 2021, 36(8): 9398-9410. [21] Tian Lixin, Yang Fei, Niu Xiping, et al.Development and analysis of 6500V SiC power MOSFET[C]//2021 18th China International Forum on Solid State Lighting & 2021 7th International Forum on Wide Bandgap Semiconductors (SSLChina: IFWS), Shenzhen, China, 2021: 6-9. [22] Romano G, Fayyaz A, Riccio M, et al.A com- prehensive study of short-circuit ruggedness of silicon carbide power MOSFETs[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2016, 4(3): 978-987. [23] Li Hong, Wang Yuting, Zhao Xingran, et al.A junction temperature-based PSpice short-circuit model of SiC MOSFET considering leakage current[C]//IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 2019: 5095-5100. [24] Dumollard Y, Batista E, Dienot J M, et al.Equation-based modeling of the electrothermal behavior of a SiC MOSFET chip during a short circuit[C]//2020 IEEE Latin America Electron Devices Conference (LAEDC), San Jose, Costa Rica, 2020: 1-4. [25] Xiang Pengfei, Hao Ruixiang, You Xiaojie, et al.Analytical modeling of SiC MOSFETs short-circuit behavior considering parasitic parameters[C]//2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 2020: 2835-2841. [26] 周郁明, 蒋保国, 刘航志, 等. 包含SiC/SiO2界面电荷的SiC MOSFET的SPICE模型[J]. 中国电机工程学报, 2019, 39(19): 5604-5612, 5888. Zhou Yuming, Jiang Baoguo, Liu Hangzhi, et al.SPICE model of SiC MOSFET including the trapped charge at SiC/SiO2 interface[J]. Proceedings of the CSEE, 2019, 39(19): 5604-5612, 5888. [27] Riccio M, D’Alessandro V, Romano G, et al. A temperature-dependent SPICE model of SiC power MOSFETs for within and out-of-SOA simulations[J]. IEEE Transactions on Power Electronics, 2018, 33(9): 8020-8029. [28] Duan Zhuolin, Fan Tao, Wen Xuhui, et al.Improved SiC power MOSFET model considering nonlinear junction capacitances[J]. IEEE Transactions on Power Electronics, 2018, 33(3): 2509-2517. [29] Hsu F J, Hung C C, Chu Kuoting, et al.A dynamic switching response improved SPICE model for SiC MOSFET with non-linear parasitic capacitance[C]//2020 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia), Suita, Japan, 2020: 1-4. [30] (美)巴利加 B J. 先进的高压大功率器件: 原理、特性和应用[M]. 于坤山, 等译. 北京: 机械工业出版社, 2015. [31] (美)尼曼 D A. 半导体物理与器件[M]. 赵毅强, 姚素英, 史再峰, 等译. 北京: 电子工业出版社, 2018. [32] Wang Zhiqiang, Shi Xiaojie, Tolbert L M, et al.Temperature-dependent short-circuit capability of silicon carbide power MOSFETs[J]. IEEE Transa- ctions on Power Electronics, 2016, 31(2): 1555-1566. [33] Zhao Xianlong, Li Tao, Liang Xiaobin, et al.Investigation on SiC MOSFET’s avalanche and short-circuit failure mechanism[C]//2022 IEEE 5th International Electrical and Energy Conference (CIEEC), Nangjing, China, 2022: 3916-3921. [34] (俄)莱温施泰因 M E, (俄)鲁缅采夫 S L. 先进半导体材料性能与数据手册[M]. (美)舒尔S M, 杨树人, 殷景志, 译. 北京: 化学工业出版社, 2003. [35] (日)木本恒暢, (美)库珀J A. 碳化硅技术基本原理——生长、表征、器件和应用[M]. 夏经华, 潘艳, 杨霏, 等译. 北京: 机械工业出版社, 2018. [36] Arnold E, Alok D.Effect of interface states on electron transport in 4H-SiC inversion layers[J]. IEEE Transactions on Electron Devices, 2001, 48(9): 1870-1877. [37] Masetti G, Severi M, Solmi S.Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon[J]. IEEE Transactions on Electron Devices, 1983, 30(7): 764-769. [38] Pérez-Tomás A, Brosselard P, Godignon P, et al.Field-effect mobility temperature modeling of 4H-SiC metal-oxide-semiconductor transistors[J]. Journal of Applied Physics, 2006, 100(11): 114508. [39] Zeng Y A, White M H, Das M K.Electron transport modeling in the inversion layers of 4H and 6H-SiC MOSFETs on implanted regions[J]. Solid-State Electronics, 2005, 49(6): 1017-1028. [40] Tilak V, Matocha K, Dunne G.Electron-scattering mechanisms in heavily doped silicon carbide MOSFET inversion layers[J]. IEEE Transactions on Electron Devices, 2007, 54(11): 2823-2829. [41] Dhar S, Haney S, Cheng L, et al.Inversion layer carrier concentration and mobility in 4H-SiC metal-oxide-semiconductor field-effect transistors[J]. Journal of Applied Physics, 2010, 108(5): 054509. [42] Powell S K, Goldsman N, McGarrity J M, et al. Physics-based numerical modeling and characteri- zation of 6H-silicon-carbide metal-oxide-semiconductor field-effect transistors[J]. Journal of Applied Physics, 2002, 92(7): 4053-4061. [43] Arnold E.Charge-sheet model for silicon carbide inversion layers[J]. IEEE Transactions on Electron Devices, 1999, 46(3): 497-503. [44] Licciardo G D, Di Benedetto L, Bellone S.Modeling of the SiO2/SiC interface-trapped charge as a function of the surface potential in 4H-SiC vertical-DMOSFET[J]. IEEE Transactions on Electron Devices, 2016, 63(4): 1783-1787. [45] Haasmann D, Dimitrijev S.Energy position of the active near-interface traps in metal-oxide- semi- conductor field-effect transistors on 4H-SiC[J]. Applied Physics Letters, 2013, 103(11): 113506. |
|
|
|