[1] 江泽民. 对中国能源问题的思考[J]. 上海交通大学学报, 2008, 42(3): 345-359.
Jiang Zemin.Reflections on energy issues in China[J]. Journal of Shanghai Jiao Tong University, 2008, 42(3): 345-359.
[2] Surana K, Jordaan S M.The climate mitigation opportunity behind global power transmission and distribution[J]. Nature Climate Change, 2019, 9(9): 660-665.
[3] Gür T M.Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage[J]. Energy & Environmental Science, 2018, 11(10): 2696-2767.
[4] Li Qi, Chen Lei, Gadinski M R, et al.Flexible high-temperature dielectric materials from polymer nanocomposites[J]. Nature, 2015, 523(7562): 576-579.
[5] Choudhary A, Sumant O.High voltage capacitor market by dielectric[R/OL].[2023-06-25].https://www.alliedmarketresearch.com/high-voltage-capacitors-market.
[6] Chen Yaohong, Lin Fuchang, Li Hua, et al.Study on self-healing and lifetime characteristics of metallized film capacitor under high electric field[C]//2011 IEEE Pulsed Power Conference, Chicago, IL, USA, 2012: 711-716.
[7] Li He, Zhou Yao, Liu Yang, et al.Dielectric polymers for high-temperature capacitive energy storage[J]. Chemical Society Reviews, 2021, 50(11): 6369-6400.
[8] Dang Zhimin, Yuan Jinkai, Yao Shenghong, et al.Flexible nanodielectric materials with high permittivity for power energy storage[J]. Advanced Materials (Deerfield Beach, Fla), 2013, 25(44): 6334-6365.
[9] 司马文霞, 华杰方, 孙魄韬, 等. 冲击电压作用下冲击电容器用聚丙烯薄膜累积失效特性[J]. 高电压技术, 2018, 44(2): 358-365.
Sima Wenxia, Hua Jiefang, Sun Potao, et al.Accumulative failure characteristic of polypropylene film in surge capacitor under repeated impulse voltage[J]. High Voltage Engineering, 2018, 44(2): 358-365.
[10] 李化, 李智威, 王国帅, 等. 脉冲功率应用中的金属化膜电容器寿命预测[J]. 强激光与粒子束, 2014, 26(4): 135-140.
Li Hua, Li Zhiwei, Wang Guoshuai, et al.Lifetime prediction of metallized polypropylene film capacitors in pulsed power applications[J]. High Power Laser and Particle Beams, 2014, 26(4): 135-140.
[11] Johnson R W, Evans J L, Jacobsen P, et al.The changing automotive environment: high-temperature electronics[J]. IEEE Transactions on Electronics Packaging Manufacturing, 2004, 27(3): 164-176.
[12] Watson J, Castro G.A review of high-temperature electronics technology and applications[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(12): 9226-9235.
[13] Weimer J A.Electrical power technology for the more electric aircraft[C]//AIAA/IEEE Digital Avionics Systems Conference, Fort Worth, USA, 1993: 445-450.
[14] Umran H M, Wang Feipeng, He Yushuang.Ageing: Causes and effects on the reliability of polypropylene film used for HVDC capacitor[J]. IEEE Access, 2020, 8: 40413-40430.
[15] 何东欣, 张涛, 陈晓光, 等. 脉冲电压下电力电子装备绝缘电荷特性研究综述[J]. 电工技术学报, 2021, 36(22): 4795-4808.
He Dongxin, Zhang Tao, Chen Xiaoguang, et al.Research overview on charge characteristics of power electronic equipment insulation under the pulse voltage[J]. Transactions of China Electrotechnical Society, 2021, 36(22): 4795-4808.
[16] 喻梦晗, 杨兰均, 林天煜, 等. 重频纳秒脉冲电压下聚酰亚胺薄膜层叠结构的绝缘特性[J]. 高电压技术, 2021, 47(2): 695-704.
Yu Menghan, Yang Lanjun, Lin Tianyu, et al.Insulation properties of polyimide film laminated structures under repeated nanosecond pulse voltage[J]. High Voltage Engineering, 2021, 47(2): 695-704.
[17] 储松潮, 黄云锴, 潘焱尧, 等. 柔性直流输电用电力电子电容器的测试与工程应用[J]. 电力电容器与无功补偿, 2019, 40(1): 59-64.
Chu Songchao, Huang Yunkai, Pan Yanyao, et al.Testing and engineering application of power electronic capacitor for flexible HVDC[J]. Power Capacitor & Reactive Power Compensation, 2019, 40(1): 59-64.
[18] 张健, 陈锐, 陈世瑛, 等. MMC子模块设备老化机理与状态监测研究综述[J]. 高压电器, 2020, 56(1): 1-8.
Zhang Jian, Chen Rui, Chen Shiying, et al.Review on aging mechanism and condition monitoring of devices in MMC sub-module[J]. High Voltage Apparatus, 2020, 56(1): 1-8.
[19] Maier C, Calafut T.Polypropylene: the Definitive User's Guide and Databook[M]. Norwich: William Andrew, 1998.
[20] 林莘, 孟涛, 徐建源, 等. 快速暂态过电压对断路器中并联电容的影响[J]. 高电压技术, 2009, 35(10): 2361-2365.
Lin Xin, Meng Tao, Xu Jianyuan, et al.Effect of very fast transient over-voltage on shunted capacitor in circuit-breaker[J]. High Voltage Engineering, 2009, 35(10): 2361-2365.
[21] Li Qi, Yao Fangzhou, Liu Yang, et al.High-temperature dielectric materials for electrical energy storage[J]. Annual Review of Materials Research, 2018, 48: 219-243.
[22] 查俊伟, 查磊军, 郑明胜. 聚偏氟乙烯基复合材料储能特性优化策略[J]. 物理学报, 2023, 72(1): 7-19.
Zha Junwei, Zha Leijun, Zheng Mingsheng.Optimization strategies for energy storage properties of polyvinylidene fluoride composites[J]. Acta Physica Sinica, 2023, 72(1): 7-19.
[23] 冯宇, 程伟晔, 岳东, 等. 含有氮化硼势垒层的三明治结构聚合物基复合介质储能特性研究[J]. 电工技术学报, 2024, 39(1): 121-134.
Feng Yu, Cheng Weiye, Yue Dong, et al.Energy storage performance of sandwich structure polymer-based composite dielectric with boron nitride barrier layer[J]. Transactions of China Electrotechnical Society, 2024, 39(1): 121-134.
[24] 郑明胜, 查俊伟, 党智敏. 新型高储能密度聚合物基绝缘材料[J]. 电工技术学报, 2017, 32(16): 37-43.
Zheng Mingsheng, Zha Junwei, Dang Zhimin.Advanced polymer-based insulating materials with high energy storage density[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 37-43.
[25] Zhu Lei.Exploring strategies for high dielectric constant and low loss polymer dielectrics[J]. The Journal of Physical Chemistry Letters, 2014, 5(21): 3677-3687.
[26] Baer E, Zhu L.50th anniversary perspective: dielectric phenomena in polymers and multilayered dielectric films[J]. Macromolecules, 2017, 50(6): 2239-2256.
[27] Li Hua, Wang Bowen, Li Zhiwei, et al.Modeling of stored charge in metallized biaxially oriented polypropylene film capacitors based on charging current measurement[J]. Review of Scientific Instruments, 2013, 84(10): 104707-104707.
[28] 王威望, 李盛涛. 工程固体电介质绝缘击穿研究现状及发展趋势[J]. 科学通报, 2020, 65(31): 3461-3474.
Wang Weiwang, Li Shengtao.Research status and development of insulation breakdown in engineering solid dielectrics[J]. Chinese Science Bulletin, 2020, 65(31): 3461-3474.
[29] 王威望, 李盛涛, 刘文凤. 聚合物纳米复合电介质的击穿性能[J]. 电工技术学报, 2017, 32(16): 25-36.
Wang Weiwang, Li Shengtao, Liu Wenfeng.Dielectric breakdown of polymer nanocomposites[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 25-36.
[30] 孙晓武. 直流支撑电容器的纹波电流影响其温升的研究[J]. 电力电容器与无功补偿, 2020, 41(4): 76-80.
Sun Xiaowu.Study on the influence of ripple current on temperature rise of DC support capacitor[J]. Power Capacitor & Reactive Power Compensation, 2020, 41(4): 76-80.
[31] 方田, 李化, 黄想, 等. 工频叠加谐波电压下温度对全膜电容器绝缘介质击穿特性的影响[J]. 高压电器, 2022, 58(9): 142-148.
Fang Tian, Li Hua, Huang Xiang, et al.Influence of temperature on the dielectric breakdown characteristics of foil-film capacitor under ac superimposed harmonic voltage[J]. High Voltage Apparatus, 2022, 58(9): 142-148.
[32] Ran Zhaoyu, Du Boxue, Xiao Meng, et al.Crystallization morphology-dependent breakdown strength of polypropylene films for converter valve capacitor[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28(3): 964-971.
[33] 章程, 邵涛, 龙凯华, 等. 重复频率纳秒脉冲聚四氟乙烯薄膜击穿特性[J]. 强激光与粒子束, 2010, 22(3): 479-483.
Zhang Cheng, Shao Tao, Long Kaihua, et al.Breakdown characteristics of repetitive nanosecond-pulse in polytetrafluoroethylene films[J]. High Power Laser and Particle Beams, 2010, 22(3): 479-483.
[34] Zhang Chuansheng, Feng Yu, Kong Fei, et al.Effect of frequency on degradation in BOPP films under repetitively pulsed voltage[J/OL]. CSEE Journal of Power and Energy Systems, 2023: 1-10[2023-06-25]. https://doi.org/10.17775/CSEEJPES.2022.07250.
[35] Fothergill J C.Filamentary electromechanical breakdown[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1991, 26(6): 1124-1129.
[36] 张天栋, 杨连印, 张昌海, 等. 聚合物基复合薄膜的高温储能性能研究进展[J]. 中国电机工程学报, 2021, 41(5): 1526-1540.
Zhang Tiandong, Yang Lianyin, Zhang Changhai, et al.Research progress on high temperature energy storage performance of polymer-based composite dielectric films[J]. Proceedings of the CSEE, 2021, 41(5): 1526-1540.
[37] Shen Zhonghui, Wang Jianjun, Jiang Jianyong, et al.Phase-field modeling and machine learning of electric-thermal-mechanical breakdown of polymer-based dielectrics[J]. Nature Communications, 2019, 10(1): 1843-1843.
[38] Xiong Jie, Wang Xin, Zhang Xiao, et al.How the biaxially stretching mode influence dielectric and energy storage properties of polypropylene films[J]. Journal of Applied Polymer Science, 2021, 138(11): 50029-50029.
[39] Lin Yuanfei, Chen Wei, Meng Lingpu, et al.Recent advances in post-stretching processing of polymer films with in situ synchrotron radiation X-ray scattering[J]. Soft Matter, 2020, 16(15): 3599-3612.
[40] Lu Junyong, Zhu Bofeng, Zhang Xiao, et al.Dielectric strength structure-activity relationship of BOPP film for high energy density pulse capacitor[J]. IEEE Transactions on Plasma Science, 2019, 47(9): 4342-4349.
[41] 赵洪, 吕洪雷, 杨佳明, 等. 结晶特性对聚丙烯空间电荷及直流击穿强度影响[J]. 高分子材料科学与工程, 2019, 35(7): 88-93.
Zhao Hong, Lü Honglei, Yang Jiaming, et al.Effect of crystalline characteristics on space charge and DC breakdown strength of polypropylene[J]. Polymer Materials Science & Engineering, 2019, 35(7): 88-93.
[42] Rytöluoto I, Gitsas A, Pasanen S, et al.Effect of film structure and morphology on the dielectric breakdown characteristics of cast and biaxially oriented polypropylene films[J]. European Polymer Journal, 2017, 95: 606-624.
[43] Ruf B L.The effects of β-crystal surface roughening on aluminum adhesion to BOPP film[J]. Journal of Plastic Film & Sheeting, 1996, 12(3): 225-241.
[44] Liu Hui, Li Dongli, Xu Wencai, et al.Crystalline structure and morphology in uniaxially oriented polypropylene film modified with nanosilica[J]. Packaging Technology and Science, 2019, 32(11): 537-544.
[45] Lahtinen K, Kääriäinen T, Johansson P, et al.UV protective zinc oxide coating for biaxially oriented polypropylene packaging film by atomic layer deposition[J]. Thin Solid Films, 2014, 570: 33-37.
[46] Hanika M, Langowski H C, Moosheimer U, et al.Inorganic layers on polymeric films-Influence of defects and morphology on barrier properties[J]. Chemical Engineering & Technology, 2003, 26(5): 605-614.
[47] Chen Jixi, Zhong Zhenxing, Su Zhaohui, et al.Analysis of defects in biaxially oriented polypropylene films by micro-Fourier transform infrared and raman spectroscopies[J]. Chinese Journal of Analytical Chemistry, 2020, 48(10): e20134-e20138.
[48] Tan D Q.The search for enhanced dielectric strength of polymer‐based dielectrics: a focused review on polymer nanocomposites[J]. Journal of Applied Polymer Science, 2020, 137(33): 49379-49379.
[49] Ho J, Jow T R.High field conduction in biaxially oriented polypropylene at elevated temperature[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19(3): 990-995.
[50] 高宇, 王小芳, 李楠, 等. 聚合物绝缘材料载流子陷阱的表征方法及陷阱对绝缘击穿影响的研究进展[J]. 高电压技术, 2019, 45(7): 2219-2230.
Gao Yu, Wang Xiaofang, Li Nan, et al.Characterization method for carrier trap and the effect on insulation breakdown within polymer insulating materials: a review[J]. High Voltage Engineering, 2019, 45(7): 2219-2230.
[51] 胡丽斌, 张传升, 谭笑, 等. 退役电缆附件微观结构与电荷特性研究[J]. 中国电机工程学报, 2021, 41(2): 770-781.
Hu Libin, Zhang Chuansheng, Tan Xiao, et al.Research on microstructure and charge characteristics of cable accessories out of service[J]. Proceedings of the CSEE, 2021, 41(2): 770-781.
[52] 王雨橙, 李化, 王哲豪, 等. 基于陷阱密度的BOPP薄膜耐γ辐照积累剂量阈值评估[J]. 电工技术学报, 2023, 38(18): 5039-5048.
Wang Yucheng, Li Hua, Wang Zhehao, et al.Threshold evaluation of γ irradiation accumulated dose of BOPP film based on trap density[J]. Transactions of China Electrotechnical Society, 2023, 38(18): 5039-5048.
[53] 张传升, 任成燕, 章程, 等. 深冷温区绝缘材料击穿及沿面放电研究进展[J]. 中国电机工程学报, 2021, 41(23): 8195-8213.
Zhang Chuansheng, Ren Chengyan, Zhang Cheng, et al.Research progress on breakdown and creeping discharge of insulation materials at cryogenic temperature range[J]. Proceedings of the CSEE, 2021, 41(23): 8195-8213.
[54] 周远翔, 王宁华, 王云杉, 等. 固体电介质空间电荷研究进展[J]. 电工技术学报, 2008, 23(9): 16-25.
Zhou Yuanxiang, Wang Ninghua, Wang Yunshan, et al.Review of research on space charge in solid dielectrics[J]. Transactions of China Electrotechnical Society, 2008, 23(9): 16-25.
[55] 李天娇, 张博, 乌江. 基于陷阱分布的PI/ZnO复合薄膜介电特性[J]. 电工技术学报, 2022, 37(6): 1554-1563.
Li Tianjiao, Zhang Bo, Wu Jiang.The dielectric properties of PI/ZnO composite films based on trap level distribution[J]. Transactions of China Electrote-chnical Society, 2022, 37(6): 1554-1563.
[56] 彭兆伟, 关永刚, 张灵, 等. β成核剂含量对等规聚丙烯电导电流和空间电荷特性的影响[J]. 电工技术学报, 2019, 34(7): 1527-1535.
Peng Zhaowei, Guan Yonggang, Zhang Ling, et al.Influence of β-nucleating agent content on conduction current and space charge characteristics in isotactic polypropylene[J]. Transactions of China Electrotechnical Society, 2019, 34(7): 1527-1535.
[57] 黄邦斗, 张传升, 章程, 等. 皮秒脉冲激光诱导压力波法测量金属化薄膜空间电荷[J]. 中国电机工程学报, 2023, 43(15): 5818-5824.
Huang Bangdou, Zhang Chuansheng, Zhang Cheng, et al.Space charge in metalized film measured by picosecond pulsed laser induced pressure pulse method[J]. Proceedings of the CSEE, 2023, 43(15): 5818-5824.
[58] Gupta A, Yadav O P, DeVoto D, et al. A review of degradation behavior and modeling of capacitors[C]// ASME 2018 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, San Francisco, USA, 2018: V001T04A004.
[59] Zhang Y, Khanbareh H, Roscow J, et al.Self-healing of materials under high electrical stress[J]. Matter, 2020, 3(4): 989-1008.
[60] 刘泳斌, 张阳, 高景晖, 等. 聚偏氟乙烯基金属化膜电容器自愈特性的研究[J]. 电力电容器与无功补偿, 2020, 41(4): 37-41.
Liu Yongbin, Zhang Yang, Gao Jinghui, et al.Study on self-healing of poly vinylidene-fluoride-based metallized film capacitors[J]. Power Capacitor & Reactive Power Compensation, 2020, 41(4): 37-41.
[61] Picci G, Rabuffi M.Pulse handling capability of energy storage metallized film capacitors[J]. IEEE Transactions on Plasma Science, 2000, 28(5): 1603-1606.
[62] Rabuffi M, Picci G.Status quo and future prospects for metallized polypropylene energy storage capacitors[J]. IEEE Transactions on Plasma Science, 2002, 30(5): 1939-1942.
[63] Chen Jie, Zhou Yao, Huang Xingyi, et al.Ladderphane copolymers for high-temperature capacitive energy storage[J]. Nature, 2023, 615(7950): 62-66.
[64] Chen Yaohong, Li Hua, Lin Fuchang, et al.Effect of interlayer air on performance of dry-type metalized film capacitor in DC, AC and pulsed applications[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18(4): 1301-1306.
[65] 王佳昕, 李化, 王哲豪, 等. 金属化膜电容器电极边缘电场畸变研究[J]. 高压电器, 2022, 58(3): 29-36.
Wang Jiaxin, Li Hua, Wang Zhehao, et al.Research on electric field distortion at the edge of metallized film capacitor electrode[J]. High Voltage Apparatus, 2022, 58(3): 29-36.
[66] Bichler C H, Langowski H C, Moosheimer U, et al.Adhesion mechanism of aluminum, aluminum oxide, and silicon oxide on biaxially oriented polypropylene (BOPP), poly(ethyleneterephthalate) (PET), and poly(vinyl chloride) (PVC)[J]. Journal of Adhesion Science and Technology, 1997, 11(2): 233-246.
[67] Tellez H, Vadillo J M, Laserna J J.Energy-resolved depth profiling of metal-polymer interfaces using dynamic quadrupole secondary ion mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2009, 23(15): 2357-2362.
[68] Yang Ying, Huang He, Wang Fang, et al.Study on microstructure and its correlation with sheet resistance of Zn-Al metallized film[J]. Surface Engineering, 2021, 37(8): 1051-1058.
[69] Ding Liping, Zhang Xiaoyong, Wang Yanqing.Study on the behavior of BOPP film treated by corona discharge[J]. Coatings, 2020, 10(12): 1195-1195.
[70] O'Hare L A, Leadley S, Parbhoo B. Surface physicochemistry of corona-discharge-treated polypropylene film[J]. Surface and Interface Analysis, 2002, 33(4): 335-342.
[71] 张镱议, 赵梓炜, 刘捷丰, 等. 耐电晕聚酰亚胺薄膜研究进展[J]. 电工技术学报, 2023, 38(5): 1190-1205.
Zhang Yiyi, Zhao Ziwei, Liu Jiefeng, et al.Research progress of corona resistant polyimide films[J]. Transactions of China Electrotechnical Society, 2023, 38(5): 1190-1205.
[72] Vähä-Nissi M, Kauppi E, Sahagian K, et al.Growth of thin Al2O3 films on biaxially oriented polymer films by atomic layer deposition[J]. Thin Solid Films, 2012, 522: 50-57.
[73] Schuman T, Wolf R A.Effects of a DBD plasma discharge on bond strength[J]. Surfaces and Interfaces, 2020, 18: 100461-100461.
[74] Żenkiewicz M.Some effects of corona discharge treatment of biaxially-oriented polypropylene film[J]. The Journal of Adhesion, 2001, 77(1): 25-41.
[75] Strobel J M, Strobel M, Lyons C S, et al.Aging of air-corona-treated polypropylene film[J]. Journal of Adhesion Science and Technology, 1991, 5(2): 119-130.
[76] Cheng Rui, Wang Yifei, Men Rujia, et al.High-energy-density polymer dielectrics via compositional and structural tailoring for electrical energy storage[J]. Iscience, 2022, 25(8): 104837-104837.
[77] Zhang Chuansheng, Ren Chengyan, Feng Yu, et al.Evolution characteristics of DC breakdown for biaxially oriented polypropylene films[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2023, 30(3): 1188-1196.
[78] Zhang Chuansheng, Feng Yu, Kong Fei, et al.Accelerated damage in metallized film capacitors under pulse surge combined with rated DC voltage[J]. IEEE Transactions on Plasma Science, 2023, 51(6): 1494-1501.
[79] Jow T R, MacDougall F W, Ennis J B, et al. Pulsed power capacitor development and outlook[C]// IEEE Pulsed Power Conference, Austin, 2015: 1-7.
[80] Liu Haoliang, Du Boxue, Xiao Meng, et al.Improved conductivity and breakdown performance of polypropylene film by parylene blending for power capacitor[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2022, 29(3): 997-1004.
[81] 叶润峰, 裴家耀, 郑明胜, 等. 高介电聚丙烯基纳米复合薄膜介电及储能性能抗老化特性[J]. 电工技术学报, 2020, 35(16): 3529-3538.
Ye Runfeng, Pei Jiayao, Zheng Mingsheng, et al.Anti-aging characteristics of dielectric and energy storage of high dielectric polypropylene based nanocomposite films[J]. Transactions of China Electrotechnical Society, 2020, 35(16): 3529-3538.
[82] Zhou Yao, Li Qi, Dang Bin, et al.A scalable, high-throughput, and environmentally benign approach to polymer dielectrics exhibiting significantly improved capacitive performance at high temperatures[J]. Advanced Materials, 2018, 30(49): 1805672-1805672.
[83] Hu Penghao, Sun Weidong, Fan Mingzhi, et al.Large energy density at high-temperature and excellent thermal stability in polyimide nanocomposite contained with small loading of BaTiO3 nanofibers[J]. Applied Surface Science, 2018, 458: 743-750.
[84] Shen Zhonghui, Wang Jianjun, Jiang Jianyong, et al.Phase-field model of electrothermal breakdown in flexible high-temperature nanocomposites under extreme conditions[J]. Advanced Energy Materials, 2018, 8(20): 1800509-1800509.
[85] Huang Xingyi, Jiang Pingkai.Core-shell structured high-k polymer nanocomposites for energy storage and dielectric applications[J]. Advanced Materials, 2015, 27(3): 546-554.
[86] 董久锋, 邓星磊, 牛玉娟, 等. 面向高温介电储能应用的聚合物基电介质材料研究进展[J]. 物理学报, 2020, 69(21): 217701-217701.
Dong Jiufeng, Deng Xinglei, Niu Yujuan, et al.Research progress of polymer based dielectrics for high-temperature capacitor energy storage[J]. Acta Physica Sinica, 2020, 69(21): 217701-217701.
[87] Jayakrishnan A R, Silva J P B, Kamakshi K, et al. Are lead-free relaxor ferroelectric materials the most promising candidates for energy storage capacitors?[J]. Progress in Materials Science, 2023, 132, 101046-101046.
[88] Streibl M, Werner S, Kaschta J, et al.The influence of nanoparticles and their functionalization on the dielectric properties of biaxially oriented polypropylene for power capacitors[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27(2): 468-475.
[89] 杜伯学, 冉昭玉, 刘浩梁, 等. 干式直流电容器聚丙烯薄膜绝缘性能及其改进方法研究进展[J]. 电工技术学报, 2023, 38(5): 1363-1374.
Du Boxue, Ran Zhaoyu, Liu Haoliang, et al.Research progress of dielectric properties and improvement methods of polypropylene film for dry-type capacitor[J]. Transactions of China Electrotechnical Society, 2023, 38(5): 1363-1374.
[90] Liu Wenfeng, Cheng Lu, Li Shengtao.Review of electrical properties for polypropylene based nano-composite[J]. Composites Communications, 2018, 10: 221-225.
[91] Zhou Yao, Yuan Chao, Wang Shaojie, et al.Interface-modulated nanocomposites based on polypropylene for high-temperature energy storage[J]. Energy Storage Materials, 2020, 28: 255-263.
[92] Liu Biao, Yang Minhao, Zhou Wenying, et al.High energy density and discharge efficiency polypropylene nanocomposites for potential high-power capacitor[J]. Energy Storage Materials, 2020, 27: 443-452.
[93] Xie Zilong, Liu Dingyao, Wu Kai, et al.Improved dielectric and energy storage properties of polypropylene by adding hybrid fillers and high-speed extrusion[J]. Polymer, 2021, 214, 123348-123348.
[94] Tan D Q.Review of polymer-based nanodielectric exploration and film scale-up for advanced capacitors[J]. Advanced Functional Materials, 2020, 30(18), 1808567-1808567.
[95] Zhang Xi, Zhu Dongzhi, You Hui, et al.Dielectric properties of biaxially oriented polypropylene nanocomposites prepared based on reactor granule technology[J]. ACS Applied Electronic Materials, 2022, 4(3): 1257-1265.
[96] Feng Yu, Tang Wenxin, Zhang Yue, et al.Machine learning and microstructure design of polymer nanocomposites for energy storage application[J]. High Voltage, 2022, 7(2), 242-250.
[97] Markus T, Hannes R, Jani P, et al.Dielectric properties of polypropylene-silica nanocomposites[C]// 21st Nordic Insulation Symposium, Gothenburg, Sweden, 2009: 31-35.
[98] Rytöluoto I, Niittymäki M, Seri P, et al.Biaxially oriented silica-polypropylene nanocomposites for HVDC film capacitors: morphology-dielectric property relationships, and critical evaluation of the current progress and limitations[J]. Journal of Materials Chemistry A, 2022, 10(6): 3025-3043.
[99] Negishi R, Hasegawa T, Tanaka H, et al.Size-dependent single electron tunneling effect in Au nanoparticles[J]. Surface Science, 2007, 601(18): 3907-3911.
[100] Wang Rui, Gou Bin, Fu Jing, et al.High-energy-density ferroelectric polymer nanocomposites utilizing the Coulomb-blockade effect[J]. Materials Today Nano, 2022, 20: 100260-100260.
[101] Yang Mingcong, Wang Shaojie, Fu Jing, et al.Quantum size effect to induce colossal high-temperature energy storage density and efficiency in polymer/ inorganic cluster composites[J]. Advanced Materials, 2023, 35(30): 2301936-2301936.
[102] Hu Jing, Zhao Xuanchen, Xie Junhao, et al.Influence of organic Na+-MMT on the dielectric and energy storage properties of maleic anhydride-functionalized polypropylene nanocomposites[J]. Journal of Polymer Research, 2022, 29(5): 182.
[103] Alba C, Peláez D, Cabo L.High-temperature metallized polymer film capacitors based on blends of polypropylene and cyclic olefin copolymers[C]// 3rd International Conference on Dielectrics, Valencia, 2020: 669-672.
[104] Yuan Xuepei, Chung T C M. Cross-linking effect on dielectric properties of polypropylene thin films and applications in electric energy storage[J]. Applied Physics Letters, 2011, 98(6): 062901-062901.
[105] 刘金刚, 张秀敏, 田付强, 等. 耐高温聚合物电介质材料的研究与应用进展[J]. 电工技术学报, 2017, 32(16): 14-24.
Liu Jingang, Zhang Xiumin, Tian Fuqiang, et al.Recent progress of research and development for high-temperature resistant polymer dielectrics[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 14-24.
[106] Wang Rui, Zhu Yujie, Fu Jing, et al.Designing tailored combinations of structural units in polymer dielectrics for high-temperature capacitive energy storage[J]. Nature Communications, 2023, 14, 2406-2406.
[107] Zhang Chun, Bai Yongping, Cheng Baoqiang, et al.Adhesion properties of atactic polypropylene/acrylate blend copolymer and its adhesion mechanism for untreated polypropylene materials[J]. International Journal of Adhesion and Adhesives, 2018, 80: 7-15.
[108] Takemoto M, Kajiyama M, Mizumachi H, et al.Miscibility and adhesive properties of ethylene vinyl acetate copolymer (EVA)-based hot-melt adhesives. I. adhesive tensile strength[J]. Journal of Applied Polymer Science, 2002, 83(4): 719-725.
[109] Villani M, Scheerder J, van Benthem R, et al. Interfacial interactions of poly (urethane-urea) based primers with polypropylene[J]. European Polymer Journal, 2014, 56: 118-130.
[110] Gong Yi, Chen Dong, Duan Junjin, et al.Largely enhanced energy density of BOPP-OBT@CPP-BOPP sandwich-structured dielectric composites[J]. Journal of Materials Chemistry C, 2022, 10(36): 13074-13083.
[111] 储松潮, 潘毓娴, 黄云锴, 等. 金属化Al2O3涂覆聚丙烯薄膜及其电容器性能研究[J]. 电力电容器与无功补偿, 2019, 40(6): 62-67.
Chu Songchao, Pan Yuxian, Huang Yunkai, et al.Study on metallized Al2O3-coated polypropylene film and its capacitor properties[J]. Power Capacitor & Reactive Power Compensation, 2019, 40(6): 62-67.
[112] Gong Yi, Xu Weiping, Chen Dong, et al.All-organic sandwich-structured BOPP/PVDF/BOPP dielectric films with significantly improved energy density and charge-discharge efficiency[J]. Chemical Engineering Journal, 2023, 458: 141525-141525.
[113] Han Chengcheng, Zhang Xianhong, Chen Dong, et al.Enhanced dielectric properties of sandwich-structured biaxially oriented polypropylene by grafting hyper-branched aromatic polyamide as surface layers[J]. Journal of Applied Polymer Science, 2020, 137: 48990-48990.
[114] Greenbank W, Ebel T.Layer-by-layer printable nano-scale polypropylene for precise control of nanocomposite capacitor dielectric morphologies in metallised film capacitors[J]. Power Electronic Devices and Components, 2023, 4: 100025-100025.
[115] Bao Zhiwei, Du Xinzhe, Ding Song, et al.Improved working temperature and capacitive energy density of biaxially oriented polypropylene films with alumina coating layers[J]. ACS Applied Energy Materials, 2022, 5(3): 3119-3128.
[116] Zhang Tiandong, Yu Hainan, Jung Y H, et al.Significantly improved high‐temperature energy storage performance of BOPP films by coating nanoscale inorganic layer[J]. Energy & Environmental Materials, 2022: e12549-e12549.
[117] Xiong Jie, Fan Xing, Long Dajiang, et al.Significant improvement in high-temperature energy storage performance of polymer dielectrics via constructing a surface polymer carrier trap layer[J]. Journal of Materials Chemistry A, 2022, 10(46): 24611-24619.
[118] 潘毓娴, 储松潮, 黄云锴, 等. 蒸镀Al2O3复合聚丙烯薄膜及其电容器性能研究[J]. 电力电容器与无功补偿, 2020, 41(4): 25-30.
Pan Yuxian, Chu Songchao, Huang Yunkai, et al.Study on properties of evaporated Al2O3 composite polypropylene film and its capacitors[J]. Power Capacitor & Reactive Power Compensation, 2020, 41(4): 25-30.
[119] Cheng Sang, Zhou Yao, Li Yushu, et al.Polymer dielectrics sandwiched by medium-dielectric-constant nanoscale deposition layers for high-temperature capacitive energy storage[J]. Energy Storage Materials, 2021, 42: 445-453.
[120] Chen Chao, Xie Yunchuan, Zhang Meirong, et al.Significantly enhanced energy storage properties in sandwich-structured polymer composites with self-assembled boron nitride layers[J]. Applied Surface Science, 2022, 598: 153673-153673.
[121] Cheng Sang, Zhou Yao, Hu Jun, et al.Polyimide films coated by magnetron sputtered boron nitride for high-temperature capacitor dielectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27(2): 498-503.
[122] Li He, Ren Lulu, Zhou Yao, et al.Recent progress in polymer dielectrics containing boron nitride nanosheets for high energy density capacitors[J]. High Voltage, 2020, 5(4): 365-376.
[123] Wang Xin, Zhang Xiao, Zhu Bofeng.Influence of surface fluorination treatment on properties of polypropylene film[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28(6): 2058-2064.
[124] Chawla S, Ghosh A K, Avasthi D K, et al.Grafting of glycidyl methacrylate onto swift-nickel-ions irradiated polypropylene films using chemical initiator[J]. Polymer Engineering & Science, 2009, 49(5): 881-888.
[125] Umran H M, Wang F, He Y.Improved electrical performance of BOPP films by acidic treatment at an elevated temperature[C]//International Conference on Diagnostics in Electrical Engineering, Pilsen, Czech, 2020: 1-4.
[126] Lahtinen K, Maydannik P, Seppänen T, et al.Protecting BOPP film from UV degradation with an atomic layer deposited titanium oxide surface coating[J]. Applied Surface Science, 2013, 282: 506-511.
[127] Ho J, Ramprasad R, Boggs S.Effect of alteration of antioxidant by UV treatment on the dielectric strength of BOPP capacitor film[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(5): 1295-1301.
[128] Liu Haoliang, Du Boxue, Xiao Meng.Improved energy density and charge discharge efficiency of polypropylene capacitor film based on surface grafting[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28(5): 1539-1546.
[129] Chi Qingguo, Wang Tianqi, Zhang Changhai, et al.Significantly improved high-temperature energy storage performance of commercial BOPP films by utilizing ultraviolet grafting modification[J]. iEnergy, 2022, 1(3): 374-382.
[130] Vähä-Nissi M, Sievänen J, Salo E, et al.Atomic and molecular layer deposition for surface modification[J]. Journal of Solid State Chemistry, 2014, 214: 7-11.
[131] Wu Xudong, Tang Shaokai, Song Guanghui, et al.High-temperature resistant polypropylene films enhanced by atomic layer deposition[J]. Nano Express, 2021, 2(1): 010025-010025.
[132] Hsu J W P, Tian Z R, Simmons N C, et al. Directed spatial organization of zinc oxide nanorods[J]. Nano Letters, 2005, 5(1): 83-86.
[133] Masuda Y, Kinoshita N, Sato F, et al.Site-selective deposition and morphology control of UV-and visible-light-emitting ZnO crystals[J]. Crystal Growth & Design, 2006, 6(1): 75-78.
[134] Lahtinen K, Lahti J, Johansson P, et al.Influence of substrate contamination, web handling, and pretreatments on the barrier performance of aluminum oxide atomic layer-deposited BOPP film[J]. Journal of Coatings Technology and Research, 2014, 11: 775-784.
[135] Mirabedini S M, Arabi H, Salem A, et al.Effect of low-pressure O2 and Ar plasma treatments on the wettability and morphology of biaxial-oriented polypropylene (BOPP) film[J]. Progress in Organic Coatings, 2007, 60(2): 105-111.
[136] Šrámková P, Kelar Tučeková Z, Fleischer M, et al.Changes in surface characteristics of BOPP foil after treatment by ambient air plasma generated by coplanar and volume dielectric barrier discharge[J]. Polymers, 2021, 13(23): 4173-4173.
[137] Štěpánová V, Šrámková P, Sihelník S, et al.The effect of ambient air plasma generated by coplanar and volume dielectric barrier discharge on the surface characteristics of polyamide foils[J]. Vacuum, 2021, 183: 109887-109887.
[138] Xie Zilong, Liu Dingyao, Tang Xiaohong, et al.Largely improved dielectric energy performances and safety of BOPP film via surface engineering[J]. Composites Science and Technology, 2023, 232: 109856-109856.
[139] Bichler C, Kerbstadt T, Langowski H C, et al.Plasma-modified interfaces between polypropylene films and vacuum roll-to-roll coated thin barrier layers[J]. Surface and Coatings Technology, 1999, 112(1-3): 373-378.
[140] Seidelmann L J W, Bradley J W, Ratova M, et al. Reel-to-reel atmospheric pressure dielectric barrier discharge (DBD) plasma treatment of polypropylene films[J]. Applied Sciences, 2017, 7(4): 337-337.
[141] Shao Tao, Wang Ruixue, Zhang Cheng, et al.Atmospheric-pressure pulsed discharges and plasmas: mechanism, characteristics and applications[J]. High Voltage, 2018, 3(1): 14-20.
[142] 邵涛, 严萍. 大气压介质阻挡放电表面改性应用[M]. 北京: 科学出版社, 2015.
[143] 胡多, 任成燕, 章程, 等. 等离子体射流处理对聚全氟乙丙烯薄膜沿面绝缘特性的影响研究[J]. 中国电机工程学报, 2019, 39(15): 4633-4641.
Hu Duo, Ren Chengyan, Zhang Cheng, et al. Effect of deposited film on the surface insulation characteristics of FEP material by atmospheric pressure plasma jet[J]. Proceedings of the CSEE, 2019, 39(15): 4633-4641. |