[1] Al-Ghussain L, Darwish Ahmad A, Abubaker A M, et al.An integrated photovoltaic/wind/biomass and hybrid energy storage systems towards 100% renewable energy microgrids in university campuses[J]. Sustainable Energy Technologies and Assessments, 2021, 46: 101273.
[2] Guo Yuanjun, Yang Zhile, Liu Kailong, et al.A compact and optimized neural network approach for battery state-of-charge estimation of energy storage system[J]. Energy, 2021, 219: 119529.
[3] Zhang Zhengxin, Si Xiaosheng, Hu Changhua, et al.Degradation data analysis and remaining useful life estimation: a review on Wiener-process-based methods[J]. European Journal of Operational Research, 2018, 271(3): 775-796.
[4] Hu Xiaosong, Feng Fei, Liu Kailong, et al.State estimation for advanced battery management: key challenges and future trends[J]. Renewable and Sustainable Energy Reviews, 2019, 114: 109334.
[5] Shrivastava P, Soon T K, Bin Idris M Y I, et al. Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries[J]. Renewable and Sustainable Energy Reviews, 2019, 113: 109233.
[6] Chen Zheng, Xue Qiao, Xiao Renxin, et al.State of health estimation for lithium-ion batteries based on fusion of autoregressive moving average model and Elman neural network[J]. IEEE Access, 2019, 7: 102662-102678.
[7] Lyu Chao, Zhang Tao, Luo Weilin, et al.SOH estimation of lithium-ion batteries based on fast time domain impedance spectroscopy[C]//2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), Xi'an, China, 2019: 2142-2147.
[8] Kwiecien M, Badeda J, Huck M, et al.Determination of SoH of lead-acid batteries by electrochemical impedance spectroscopy[J]. Applied Sciences, 2018, 8(6): 873.
[9] Sauer D U, Wenzl H.Comparison of different approaches for lifetime prediction of electrochemical systems—using lead-acid batteries as example[J]. Journal of Power Sources, 2008, 176(2): 534-546.
[10] Zhang Ji’ang, Wang Ping, Gong Qingrui, et al.SOH estimation of lithium-ion batteries based on least squares support vector machine error compensation model[J]. Journal of Power Electronics, 2021, 21(11): 1712-1723.
[11] Wang Shuai, Zhang Xiaochen, Chen Wengxiang, et al.State of health prediction based on multi-kernel relevance vector machine and whale optimization algorithm for lithium-ion battery[J]. Transactions of the Institute of Measurement and Control, 2021, DOI: 101177/01423312211042009.
[12] 杨胜杰, 罗冰洋, 王菁, 等. 基于容量增量曲线峰值区间特征参数的锂离子电池健康状态估算[J]. 电工技术学报, 2021, 36(11): 2277-2287.
Yang Shengjie, Luo Bingyang, Wang Jing, et al.State of health estimation for lithium-ion batteries based on peak region feature parameters of incremental capacity curve[J]. Transactions of China Electrotechnical Society, 2021, 36(11): 2277-2287.
[13] 韩乔妮, 姜帆, 程泽. 变温度下IHF-IGPR框架的锂离子电池健康状态预测方法[J]. 电工技术学报, 2021, 36(17): 3705-3720.
Han Qiaoni, Jiang Fan, Cheng Ze.State of health estimation for lithium-ion batteries based on the framework of IHF-IGPR under variable temperature[J]. Transactions of China Electrotechnical Society, 2021, 36(17): 3705-3720.
[14] 李超然, 肖飞, 樊亚翔, 等. 基于卷积神经网络的锂离子电池SOH估算[J]. 电工技术学报, 2020, 35(19): 4106-4119.
Li Chaoran, Xiao Fei, Fan Yaxiang, et al.An approach to lithium-ion battery SOH estimation based on convolutional neural network[J]. Transactions of China Electrotechnical Society, 2020, 35(19): 4106-4119.
[15] 郭永芳, 黄凯, 李志刚. 基于短时搁置端电压压降的快速锂离子电池健康状态预测[J]. 电工技术学报, 2019, 34(19): 3968-3978.
Guo Yongfang, Huang Kai, Li Zhigang.Fast state of health prediction of lithium-ion battery based on terminal voltage drop during rest for short time[J]. Transactions of China Electrotechnical Society, 2019, 34(19): 3968-3978.
[16] Fan Yaxiang, Xiao Fei, Li Chaoran, et al.A novel deep learning framework for state of health estimation of lithium-ion battery[J]. Journal of Energy Storage, 2020, 32: 101741.
[17] Bonfitto A.A method for the combined estimation of battery state of charge and state of health based on artificial neural networks[J]. Energies, 2020, 13(10): 2548.
[18] Zhang Sihan, Hosen M S, Kalogiannis T, et al.State of health estimation of lithium-ion batteries based on electrochemical impedance spectroscopy and backpropagation neural network[J]. World Electric Vehicle Journal, 2021, 12(3): 156.
[19] Chang Chun, Wang Qiyue, Jiang Jiuchun, et al.Lithium-ion battery state of health estimation using the incremental capacity and wavelet neural networks with genetic algorithm[J]. Journal of Energy Storage, 2021, 38: 102570.
[20] Jia Jianfang, Wang Keke, Pang Xiaoqiong, et al.Multi-scale prediction of RUL and SOH for lithium-ion batteries based on WNN-UPF combined model[J]. Chinese Journal of Electronics, 2021, 30(1): 26-35.
[21] Zhang J, Gao X P, Li Y Q.Efficient wavelet networks for function learning based on adaptive wavelet neuron selection[J]. IET Signal Processing, 2012, 6(2): 79.
[22] Xia Bizhong, Cui Deyu, Sun Zhen, et al.State of charge estimation of lithium-ion batteries using optimized Levenberg-Marquardt wavelet neural network[J]. Energy, 2018, 153: 694-705.
[23] Chang Wen-Yeau, Chang Po-Chuan.Application of radial basis function neural network, to estimate the state of health for LFP battery[J]. International Journal of Electrical and Electronics Engineering (IJEEE), 2018, 7(1): 1-6.
[24] 周才杰, 汪玉洁, 李凯铨, 等. 基于灰色关联度分析-长短期记忆神经网络的锂离子电池健康状态估计[J]. 电工技术学报, 2022, 37(23): 6065-6073.
Zhou Caijie, Wang Yujie, Li Kaiquan, et al.State of health estimation for lithium-Ion battery based ongray correlation analysis and long short-term memory neural network[J]. Transactions of China Electrotechnical Society, 2022, 37(23): 6065-6073.
[25] 黄凯, 丁恒, 郭永芳, 等. 基于数据预处理和长短期记忆神经网络的锂离子电池寿命预测[J]. 电工技术学报, 2022, 37(15): 3753-3766.
Huang Kai, Ding Heng, Guo Yongfang, et al.Prediction of remaining useful life of lithium-ion battery based on adaptive data preprocessing and long short-term memory network[J]. Transactions of China Electrotechnical Society, 2022, 37(15): 3753-3766.
[26] Kim S J, Kim S H, Lee H M, et al.State of health estimation of Li-ion batteries using multi-input LSTM with optimal sequence length[C]//2020 IEEE 29th International Symposium on Industrial Electronics (ISIE), Delft, Netherlands, 2020: 1336-1341.
[27] 程泽, 杨磊, 孙幸勉. 基于自适应平方根无迹卡尔曼滤波算法的锂离子电池SOC和SOH估计[J]. 中国电机工程学报, 2018, 38(8): 2384-2393.
Cheng Ze, Yang Lei, Sun Xingmian.Estimation of SOC and SOH of Li-ion battery based on adaptive square root unscented Kalman filter algorithm[J]. Proceedings of the CSEE, 2018, 38(8): 2384-2393.
[28] 王萍, 弓清瑞, 张吉昂, 等. 一种基于数据驱动与经验模型组合的锂电池在线健康状态预测方法[J]. 电工技术学报, 2021, 36(24): 5201-5212.
Wang Ping, Gong Qingrui, Zhang Jiang, et al.An online state of health prediction method for lithium batteries based on combination of data-driven and empirical model[J]. Transactions of China Electrotechnical Society, 2021, 36(24): 5201-5212.
[29] 周頔, 宋显华, 卢文斌, 等. 基于日常片段充电数据的锂电池健康状态实时评估方法研究[J]. 中国电机工程学报, 2019, 39(1): 105-111.
Zhou Di, Song Xianhua, Lu Wenbin, et al.Real-time SOH estimation algorithm for lithium-ion batteries based on daily segment charging data[J]. Proceedings of the CSEE, 2019, 39(1): 105-111.
[30] Yang Duo, Zhang Xu, Pan Rui, et al.A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve[J]. Journal of Power Sources, 2018, 384: 387-395.
[31] Julier S J, Uhlmann J K.New extension of the Kalman filter to nonlinear systems[C]//AeroSense '97. Proc SPIE 3068, Signal Processing, Sensor Fusion, and Target Recognition VI, Orlando, FL, USA, 1997, 3068: 182-193. |