|
|
Electrical Tree Characteristics and Mechanism of Grafted Polypropylene Cable Insulation |
Zhang Wenjia1, Wang Wei1, Yuan Hao2, Li Qi3, He Jinliang3 |
1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 China; 2. SINOPEC (Beijing) Research Institute of Chemical Industry Co. Ltd Beijing 100013 China; 3. State Key Laboratory of Control and Simulation of Power System and Generation Equipment Department of Electrical Engineering Tsinghua University Beijing 100084 China |
|
|
Abstract To meet the requirements of increasing the transmission capacity of the power grid, the development of recyclable polypropylene (PP) cable insulation material has become a hotspot in recent years. The electrical tree is a serious electrical ageing phenomenon of insulation. When the cable runs in a high voltage environment for a long time, the ageing deterioration process will introduce a large number of defects in the insulating layer, and these defects will produce a local high electric field, which may initiate an electrical tree and result in insulation failure. A large number of research results show that graft modification can stably improve the dielectric properties of PP materials, but it is not clear whether graft modification can improve the electrical tree properties of PP cable insulation materials under long-term operation and the related mechanism. In this paper, the methyl methacrylate (MMA) monomer is grafted by the aqueous suspension method. A needle-needle electrode structure is applied in the electrical tree test. The needles are pre-embedded to avoid mechanical damage. The results show that compared with pure PP, the electrical tree initiation time of grafted PP is significantly improved, and the deterioration area and growth rate of the electrical tree are significantly reduced. With the increase of the MMA content, the electrical tree performance improves monotonously. Although the morphology of the trees is branch-like, the number of branches decreases as the grafting content increases. The trap distribution characteristics are studied, and it is found that after the MMA is grafted onto the PP matrix, the level of deep traps increases. As MMA content increases, the density of the deep traps increases gradually. The crystallization characteristics are studied in this paper. The results of differential scanning calorimetry show that the crystallinity drops when MMA is grafted, for the steric hindrance effect of the large side group volume of MMA monomers that hinders the orderly folding of PP chains. The spherulite morphology is studied through polarized microscopy, it is found that the size of the spherulites decreases monotonously with the increase of the grafting content. The analysis shows that the polar functional group carbonyl in the grafted MMA monomer can introduce a large number of deep traps into the PP matrix, which is conducive to inhibiting the carrier trapping, detrapping, recombining and transporting behaviours. As is known, the dielectric properties of the crystal region are better than that of the amorphous region. And the heterogeneous nucleation effect of MMA monomer on the PP molecular chain increases the spherulite number and reduces the spherulite size, significantly compressing the spatial scale of the amorphous channel. The changes MMA brings to trap and crystallization characteristics together make the electrical tree initiation characteristics of grafted PP improved. In addition, the decrease in spherulite size of grafted PP makes the amorphous channel more tortuous and narrower, which significantly increases the resistance of electric tree growth along the direction of the electric field, and then improves the electric tree growth characteristics of grafted PP. With the increase of MMA monomer grafting content, the electrical tree initiation and growth characteristics of grafted PP gradually improve.
|
Received: 08 September 2022
|
|
|
|
|
[1] 周远翔, 赵健康, 刘睿, 等. 高压/超高压电力电缆关键技术分析及展望[J]. 高电压技术, 2014, 40(9): 2593-2612. Zhou Yuanxiang, Zhao Jiankang, Liu Rui, et al.Key technical analysis and prospect of high voltage and extra-high voltage power cable[J]. High Voltage Engineering, 2014, 40(9): 2593-2612. [2] 雷伟群, 刘冠芳, 耿涛, 等. XLPE/SiO2纳米复合材料长期直流老化特征寿命恶化分析[J]. 电工技术学报, 2022, 37(2): 311-321. Lei Weiqun, Liu Guanfang, Geng Tao, et al.Analysis on the characteristic lifetime deterioration of XLPE/SiO2 nano-composites after long-term DC aging[J]. Transactions of China Electrotechnical Society, 2022, 37(2): 311-321. [3] Zhou Yao, He Jinliang, Hu Jun, et al.Evaluation of polypropylene/polyolefin elastomer blends for potential recyclable HVDC cable insulation applications[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(2): 673-681. [4] 何金良, 彭琳, 周垚. 环保型高压直流电缆绝缘材料研究进展[J]. 高电压技术, 2017, 43(2): 337-343. He Jinliang, Peng Lin, Zhou Yao.Research progress of environment-friendly HVDC power cable insulation materials[J]. High Voltage Engineering, 2017, 43(2): 337-343. [5] 杜伯学, 侯兆豪, 徐航, 等. 高压直流电缆绝缘用聚丙烯及其纳米复合材料的研究进展[J]. 高电压技术, 2017, 43(9): 2769-2780. Du Boxue, Hou Zhaohao, Xu Hang, et al.Research achievements in polypropylene and polypropylene/ inorganic nanocomposites for HVDC cable insulation[J]. High Voltage Engineering, 2017, 43(9): 2769-2780. [6] 黄兴溢, 张军, 江平开. 热塑性电力电缆绝缘材料: 历史与发展[J]. 高电压技术, 2018, 44(5): 1377-1398. Huang Xingyi, Zhang Jun, Jiang Pingkai.Thermoplastic insulation materials for power cables: history and progress[J]. High Voltage Engineering, 2018, 44(5): 1377-1398. [7] Zhou Yao, Hu Jun, Dang Bin, et al.Mechanism of highly improved electrical properties in polypro-pylene by chemical modification of grafting maleic anhydride[J]. Journal of Physics D: Applied Physics, 2016, 49(41): 415301. [8] Zha Junwei, Wu Yunhui, Wang Sijiao, et al.Improvement of space charge suppression of polypropylene for potential application in HVDC cables[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(4): 2337-2343. [9] Zhou Yu, Yang Jiaming, Zhao Hong, et al.Improved DC dielectric performance of cPP-g-MAH/iPP/SEBS composite with chemical graft modification[J]. Materials, 2019, 12(7): 1094. [10] Yuan Hao, Zhou Yao, Zhu Yujie, et al.Origins and effects of deep traps in functional group grafted polymeric dielectric materials[J]. Journal of Physics D: Applied Physics, 2020, 53(47): 475301. [11] 樊林禛, 李琦, 袁浩, 等. 接枝对聚丙烯绝缘材料热氧老化的影响及机理[J]. 中国电机工程学报, 2022, 42(11): 4227-4238. Fan Linzhen, Li Qi, Yuan Hao, et al.Influence and mechanism of grafting on thermal oxidative aging of polypropylene[J]. Proceedings of the CSEE, 2022, 42(11): 4227-4238. [12] 胡世勋, 张雅茹, 邵清, 等. 不同改性技术路线的聚丙烯基高压直流电缆绝缘材料综合性能比较[J]. 中国电机工程学报, 2022, 42(4): 1243-1252. Hu Shixun, Zhang Yaru, Shao Qing, et al.Comprehensive performance comparisons of polypropylene-based HVDC cable insulating materials adopting different modification technical routes[J]. Proceedings of the CSEE, 2022, 42(4): 1243-1252. [13] Huang Xiaoyan, Han Lu, Yang Xiao, et al.Smart dielectric materials for next-generation electrical insulation[J]. iEnergy, 2022, 1(1): 19-49. [14] 杜伯学, 张莹, 孔晓晓, 等. 环氧树脂绝缘电树枝劣化研究进展[J]. 电工技术学报, 2022, 37(5): 1128-1135, 1157. Du Boxue, Zhang Ying, Kong Xiaoxiao, et al.Research progress on electrical tree in epoxy resin insulation[J]. Transactions of China Electrotechnical Society, 2022, 37(5): 1128-1135, 1157. [15] Yang Yang, Dang Zhimin, Li Qi, et al.Self-healing of electrical damage in polymers[J]. Advanced Science, 2020, 7(21): 2002131. [16] 张晓虹, 石泽祥, 张双, 等. 基于局部放电特征研究蒙脱土/聚乙烯纳米复合材料的电树枝性能[J]. 电工技术学报, 2019, 34(23): 5049-5057. Zhang Xiaohong, Shi Zexiang, Zhang Shuang, et al.Investigation on electrical tree resistance property of montmorillonite/polyethylene nanocomposites based on partial discharge characteristics[J]. Transactions of China Electrotechnical Society, 2019, 34(23): 5049-5057. [17] Yang Yang, He Jinliang, Li Qi, et al.Self-healing of electrical damage in polymers using superparamagnetic nanoparticles[J]. Nature Nanotechnology, 2019, 14(2): 151-155. [18] Liu Ying, Cao Xiaolong, Chen G.Electrical tree initiation in XLPE cable insulation under constant DC, grounded DC, and at elevated temperature[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25(6): 2287-2295. [19] Zhu Xi, Wu Jiandong, Wang Yalin, et al.Characteristics of partial discharge and AC electrical tree in XLPE and MgO/XLPE nanocomposites[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27(2): 450-458. [20] 王昊月, 李成榕, 王伟, 等. 高压频域介电谱诊断XLPE电缆局部绝缘老化缺陷的研究[J]. 电工技术学报, 2022, 37(6): 1542-1553. Wang Haoyue, Li Chengrong, Wang Wei, et al.Local aging diagnosis of XLPE cables using high voltage frequency domain dielectric spectroscopy[J]. Transactions of China Electrotechnical Society, 2022, 37(6): 1542-1553. [21] 朱乐为, 杜伯学. 环境友好型直流电缆料聚丙烯绝缘的电树枝研究进展[J]. 电气工程学报, 2018, 13(11): 21-29. Zhu Lewei, Du Boxue.Research status on electrical tree of polymer insulation materials in HVDC cables[J]. Journal of Electrical Engineering, 2018, 13(11): 21-29. [22] Du Boxue, Zhu Lewei, Han Tao.Effect of low temperature on electrical treeing of polypropylene with repetitive pulse voltage[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(4): 1915-1923. [23] 迟晓红, 俞利, 郑杰, 等. 蒙脱土/聚丙烯复合材料结晶形态及耐电树枝化特性[J]. 复合材料学报, 2015, 32(1): 76-84. Chi Xiaohong, Yu Li, Zheng Jie, et al.Crystallization morphology and electrical tree resistance characteristics of montmorillonite/polypropylene composites[J]. Acta Materiae Compositae Sinica, 2015, 32(1): 76-84. [24] 迟晓红, 高俊国, 郑杰, 等. 聚丙烯中电树枝生长机理研究[J]. 物理学报, 2014, 63(17): 177701. Chi Xiaohong, Gao Junguo, Zheng Jie, et al.The mechanism of electrical treeing propagation in polypropylene[J]. Acta Physica Sinica, 2014, 63(17): 177701. [25] Zhu Lewei, Du Boxue, Li Zhonglei, et al.Polycyclic compounds affecting electrical tree growth in polypropylene under ambient temperature[J]. IEEE Access, 2020, 8: 8886-8898. [26] Gao Yu, Li Jing, Han Tao, et al.Temperature and trap distribution dependence of electrical tree growth characteristics in polypropylene/elastomer blends for recyclable cable insulation[J]. IET Science, Measurement & Technology, 2019, 13(5): 755-765. [27] 李春阳, 韩宝忠, 张城城, 等. 电压稳定剂提高PE/XLPE绝缘耐电性能研究综述[J]. 中国电机工程学报, 2017, 37(16): 4850-4864, 4911. Li Chunyang, Han Baozhong, Zhang Chengcheng, et al.Review of voltage stabilizer improving the electrical strength of PE/XLPE[J]. Proceedings of the CSEE, 2017, 37(16): 4850-4864, 4911. [28] 梁逢春, 宋文波, 袁浩, 等. 水相悬浮接枝改性PP的研究进展[J]. 合成树脂及塑料, 2018, 35(1): 81-85. Liang Fengchun, Song Wenbo, Yuan Hao, et al.Research progress of water-phase suspension grafting of PP[J]. China Synthetic Resin and Plastics, 2018, 35(1): 81-85. [29] 袁浩, 邵清, 李娟, 等. 苯乙烯接枝聚丙烯共聚物的结晶行为[J]. 合成树脂及塑料, 2020, 37(6): 6-9. Yuan Hao, Shao Qing, Li Juan, et al.Crystallization behaviors of styrene-grafted polypropylene copo-lymer[J]. China Synthetic Resin and Plastics, 2020, 37(6): 6-9. [30] Da Silva A L N, Tavares M I B, Politano D P, et al. Polymer blends based on polyolefin elastomer and polypropylene[J]. Journal of Applied Polymer Science, 1997, 66(10): 2005-2014. [31] 李盛涛, 郑晓泉. 聚合物电树枝化[M]. 北京: 机械工业出版社, 2006. [32] Champion J V, Dodd S J, Stevens G C.Long-term light emission measurement and imaging during the early stages of electrical breakdown in epoxy resin[J]. Journal of Physics D: Applied Physics, 1994, 27(3): 604-610. [33] 屠德民, 王新生, 刘付德, 等. 聚合物击穿的陷阱理论及其在聚丙烯上的验证[J]. 电工技术学报, 1993, 8(3): 47-51. Tu Demin, Wang Xinsheng, Liu Fude, et al.The trap theory of breakdown in polymer and its verification in polypropyiene[J]. Transactions of China Electrotechnical Society, 1993, 8(3): 47-51. [34] Mammeri M, Laurent C, Salon J.Influence of space charge buildup on the transition to electrical treeing in PE under ac voltage[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1995, 2(1): 27-35. [35] Kolesov S N.The influence of morphology on the electric strength of polymer insulation[J]. IEEE Transactions on Electrical Insulation, 1980, 15(5): 382-388. [36] 李忠磊, 王赫宇, 范铭升, 等. 机械拉伸对聚丙烯绝缘空间电荷与击穿特性的影响研究[J]. 中国电机工程学报, 2022, 42(11): 4255-4266. Li Zhonglei, Wang Heyu, Fan Mingsheng, et al.Effect of mechanical strains on space charge and breakdown characteristics of polypropylene insulation[J]. Proceedings of the CSEE, 2022, 42(11): 4255-4266. [37] Yang Kai, Liu Yun, Yan Zhimin, et al.Enhanced morphology-dependent tensile property and breakdown strength of impact polypropylene copolymer for cable insulation[J]. Materials, 2020, 13(18): 3935-3948. [38] Tian Fuqiang, Bu Wenbin, Shi Linshuang, et al.Theory of modified thermally stimulated current and direct determination of trap level distribution[J]. Journal of Electrostatics, 2011, 69(1): 7-10. [39] 石尧麒. 基于α/β复合成核剂成核聚丙烯结晶过程调控及成核机理的研究[D]. 上海: 华东理工大学, 2012. [40] 金日光, 华幼卿. 高分子物理[M]. 3版. 北京: 化学工业出版社, 2007. [41] 李文华, 陈小华, 张刚, 等. 溶液法制备聚丙烯/碳纳米管复合材料的结晶行为[J]. 高分子材料科学与工程, 2007, 23(2): 194-197, 202. Li Wenhua, Chen Xiaohua, Zhang Gang, et al.Crystallization studies in polypropylene/carbon nanotubes composite[J]. Polymer Materials Science & Engineering, 2007, 23(2): 194-197, 202. [42] Cao Jing, Wen Na, Zheng Yuying.Effect of long chain branching on the rheological behavior, crystallization and mechanical properties of polypropylene random copolymer[J]. Chinese Journal of Polymer Science, 2016, 34(9): 1158-1171. |
|
|
|