[1] 李盛涛, 王诗航, 杨柳青, 等. 高压电缆交联聚乙烯绝缘的关键性能与基础问题[J]. 中国电机工程学报, 2022, 42(11): 4247-4255.
Li Shengtao, Wang Shihang, Yang Liuqing, et al.Important properties and fundamental issues of the crosslinked polyethylene insulating materials used in high-voltage cable[J]. Proceedings of the CSEE, 2022, 42(11): 4247-4255.
[2] 石逸雯, 陈向荣, 孟繁博, 等. 电压稳定剂及其含量对高压直流用500 kV XLPE电缆材料绝缘性能的影响[J]. 电工技术学报, 2022, 37(22): 5851-5861.
Shi Yiwen, Chen Xiangrong, Meng Fanbo, et al.The effect of voltage stabilizer and its content on the insulation properties of 500 kV HVDC cable insulation materials[J]. Transactions of China Electrotechnical Society, 2022, 37(22): 5851-5861.
[3] 吴晶晶, 陈丽安, 严有祥, 等. ±500 kV高压直流XLPE电缆温度分布及其影响因素研究[J]. 高压电器, 2023, 59(2): 113-119.
Wu Jingjing, Chen Lian, Yan Youxiang, et al.Study on temperature distribution of ±500 kV HVDC XLPE cable and its influencing factors[J]. High Voltage Apparatus, 2023, 59(2): 113-119.
[4] 魏艳慧, 郑元浩, 龙海泳, 等. 绝缘层厚度对高压直流电缆电场和温度场分布的影响[J]. 电工技术学报, 2022, 37(15): 3932-3940.
Wei Yanhui, Zheng Yuanhao, Long Haiyong, et al.Influence of insulation layer thickness on electric field and temperature field of HVDC cable[J]. Transactions of China Electrotechnical Society, 2022, 37(15): 3932-3940.
[5] Li Jiacai, Si Zhicheng, Shang Kai, et al.Kinetic and chemorheological evaluation on the crosslinking process of peroxide-initiated low-density polyethylene[J]. Polymer, 2023, 266: 125627.
[6] 李加才, 刘红剑, 王诗航, 等. 交联剂和抗氧剂对低密度聚乙烯绝缘料熔体黏弹特性的影响[J]. 中国电机工程学报, 2023, 43(1): 368-380.
Li Jiacai, Liu Hongjian, Wang Shihang, et al.Effect of crosslinking agent and antioxidants on the melt viscoelastic properties of low-density polyethylene insulating materials[J]. Proceedings of the CSEE, 2023, 43(1): 368-380.
[7] Liu Hongjian, Wang Shihang, Li Shengtao, et al.Effect of thermo-oxidative aging on thermal elongation performance of XLPE insulation for high-voltage cables[J]. Polymer Degradation and Stability, 2023, 210: 110291.
[8] 刘骥, 闫爽, 王守明, 等. 基于低频高压频域介电谱的XLPE电缆电树枝老化状态评估[J]. 电工技术学报, 2023, 38(9): 2510-2518.
Liu Ji, Yan Shuang, Wang Shouming, et al.Evaluation of electrical tree aging state of XLPE cables based on low frequency and high voltage frequency domain spectroscopy[J]. Transactions of China Electrotechnical Society, 2023, 38(9): 2510-2518.
[9] 王昊月, 李成榕, 王伟, 等. 高压频域介电谱诊断XLPE电缆局部绝缘老化缺陷的研究[J]. 电工技术学报, 2022, 37(6): 1542-1553.
Wang Haoyue, Li Chengrong, Wang Wei, et al.Local aging diagnosis of XLPE cables using high voltage frequency domain dielectric spectroscopy[J]. Transactions of China Electrotechnical Society, 2022, 37(6): 1542-1553.
[10] 杜伯学, 韩晨磊, 李进, 等. 高压直流电缆聚乙烯绝缘材料研究现状[J]. 电工技术学报, 2019, 34(1): 179-191.
Du Boxue, Han Chenlei, Li Jin, et al.Research status of polyethylene insulation for high voltage direct current cables[J]. Transactions of China Electrotechnical Society, 2019, 34(1): 179-191.
[11] 罗军, 潘晨美, 帅选阳, 等. 超高压交联聚乙烯电缆绝缘料流变行为研究[J]. 绝缘材料, 2015, 48(11): 49-53, 58.
Luo Jun, Pan Chenmei, Shuai Xuanyang, et al.Study on rheological behavior of EHV XLPE cable insulation materials[J]. Insulating Materials, 2015, 48(11): 49-53, 58.
[12] 娄立娟, 刘建叶, 俞炜, 等. 聚合物长支链的流变学表征方法[J]. 高分子通报, 2009(10): 15-23.
Lou Lijuan, Liu Jianye, Yu Wei, et al.Rheological characterization of long chain branching[J]. Polymer Bulletin, 2009(10): 15-23.
[13] Yamaguchi M, Takahashi M.Rheological properties of low-density polyethylenes produced by tubular and vessel processes[J]. Polymer, 2001, 42(21): 8663-8670.
[14] Zentel K M, Bungu P S E, Degenkolb J, et al. Connecting the complex microstructure of LDPE to its rheology and processing properties via a combined fractionation and modelling approach[J]. RSC Advances, 2021, 11(52): 33114-33123.
[15] Barroso V C, Maia J M.Influence of long-chain branching on the rheological behavior of polyethylene in shear and extensional flow[J]. Polymer Engineering & Science, 2005, 45(7): 984-997.
[16] Kazatchkov I B, Hatzikiriakos S G, Bohnet N, et al.Influence of molecular structure on the rheological and processing behavior of polyethylene resins[J]. Polymer Engineering & Science, 1999, 39(4): 804-815.
[17] Chai C K.Rheological studies of molecular effect and processing conditions on blown film property of polyethylenes[J]. Polymer, 2023, 267: 125668.
[18] Long Chuanjiang, Dong Zhen, Liu Xiaoqing, et al.Simultaneous enhancement in processability and mechanical properties of polyethylenes via tuning the molecular weight distribution from unimodal to bimodal shape[J]. Polymer, 2022, 258: 125287.
[19] Mendelson R A, Bowles W A, Finger F L.Effect of molecular structure on polyethylene melt rheology. I. Low-shear behavior[J]. Journal of Polymer Science Part A-2: Polymer Physics, 1970, 8(1): 105-126.
[20] Wood-Adams P M, Dealy J M. Using rheological data to determine the branching level in metallocene polyethylenes[J]. Macromolecules, 2000, 33(20): 7481-7488.
[21] Pladis P, Meimaroglou D, Kiparissides C.Prediction of the viscoelastic behavior of low-density polyethylene produced in high-pressure tubular reactors[J]. Macromolecular Reaction Engineering, 2015, 9(3): 271-284.
[22] Kitade S, Yokomizo K, Hattori T, et al.Relationship between branched structure and viscoelastic properties of highly branched polyethylene derived by Monte Carlo molecular simulation and the BoB-rheology simulation methods[J]. Macromolecular Theory and Simulations, 2021, 30(3): 2000069.
[23] Janzen J, Colby R H. Diagnosing long-chain branching in polyethylenes[J]. Journal of Molecular Structure, 1999, 485/486: 569-583.
[24] Li Pei, Xue Yanhu, Liu Wei, et al.Chain structure comparison of two low density polyethylene resins fractionated by temperature rising elution fractionation and thermal fractionation[J]. Journal of Polymer Research, 2019, 26(3): 1-13.
[25] 李沛. 新型聚乙烯和聚丙烯树脂的分级及链结构研究[D]. 长春: 吉林大学, 2019.
[26] Tackx P, Tacx J C J F. Chain architecture of LDPE as a function of molar mass using size exclusion chromatography and multi-angle laser light scattering (SEC-MALLS)[J]. Polymer, 1998, 39(14): 3109-3113.
[27] 何曼君, 张红东, 陈维孝. 高分子物理[M]. 3版. 上海: 复旦大学出版社, 2007.
[28] Koszkul J, Nabialek J. Viscosity models in simulation of the filling stage of the injection molding process[J]. Journal of Materials Processing Technology, 2004, 157/158: 183-187.
[29] Lohse D J, Milner S T, Fetters L J, et al.Well-defined, model long chain branched polyethylene. 2. melt rheological behavior[J]. Macromolecules, 2002, 35(8): 3066-3075.
[30] 吴春霜, 马小伟, 关莉. PE-RT管材专用料长支链流变表征[J]. 上海塑料, 2017(1): 31-36.
Wu Chunshuang, Ma Xiaowei, Guan Li.Characterization of long-chain-branching in PE-RT speciality resin for pipe[J]. Shanghai Plastics, 2017(1): 31-36.
[31] 和占杰. 燕化集团18万t/a高压聚乙烯装置脱“瓶颈”的可行性分析[J]. 石化技术, 1998, 5(1): 12-16.
He Zhanjie.Feasibility study on debottleneck in 180 kt/a ldpe plant[J]. Petrochemical Industry Technology, 1998, 5(1): 12-16.
[32] Spalding M A, Chatterjee A M.Handbook of industrial polyethylene and technology: definitive guide to manufacturing, properties, processing, applications and markets[M]. Hoboken: John Wiley &Sons, 2017.
[33] 高凌雁, 王群涛, 郭锐, 等. 聚乙烯的动态流变行为分析[J]. 合成树脂及塑料, 2018, 35(4): 75-78.
Gao Lingyan, Wang Quntao, Guo Rui, et al.Analysis of dynamic rheology behavior of PE[J]. China Synthetic Resin and Plastics, 2018, 35(4): 75-78.
[34] Li Jiacai, Liu H, Liu H, et al.Effect of additives on melt viscoelasticity of insulating materials used in high voltage crosslinked polyethylene cables[C]// 22nd International Symposium on High Voltage Engineering (ISH 2021), Hybrid Conference, Xi’an, China, 2021: 828-833. |