|
|
DFIG Sub-Synchronous Oscillation Suppression Strategy Based on Backstepping Adaptive Quasi-Resonant Control |
Sun Dongyang1, Meng Fanyi1, Wang Nan2, Jin Ningzhi1, Cai Wei1 |
1. College of Electrical and Electronic Engineering Harbin University of Science and Technology Harbin 150080 China; 2. College of Electrical Engineering and Automation Harbin Institute of Technology Harbin 150001 China |
|
|
Abstract With the continuous expansion of the capacity and scale of power system, the series compensation capacitor is often adopted to improve the transmission capacity of the line, but this aggravates the risk of sub-synchronous oscillation in the system. The power grid sub-synchronous oscillation will affect the control of the rotor side converter (RSC) of doubly fed induction generator (DFIG), and then cause the oscillation divergence of stator current, and in severe cases, the wind turbine will be disconnected from the grid. To solve the problem that the sub-synchronous oscillation of the power grid interferes with the control of the RSC of the DFIG, which leads to the distortion of DFIG stator current, this paper adopts the RSC backstepping sub-synchronous oscillation suppression strategy based on adaptive quasi-resonant control to maintain the stable output of DFIG stator current. The propagation mechanism of power grid sub-synchronous oscillation in RSC is firstly studied, and the propagation path of oscillation signal in RSC control system is determined by establishing the RSC mathematical model under the power grid sub-synchronous oscillation, and the calculation formula of sub-synchronous component of DFIG stator current is obtained. Secondly, the corresponding backstepping controller is designed based on the RSC decoupling model and the Lyapunov stability function to simplify the RSC control system and reduce the power grid sub-synchronous oscillation transmission path. At the same time, considering the failure of the oscillation suppression strategy when the power grid sub-synchronous oscillation frequency changes, this paper proposes to use an adaptive quasi-resonant controller to track and control the sub-synchronous components of different frequencies in the DFIG stator current. The backstepping controller and the adaptive quasi-resonant controller control the fundamental and sub-synchronous components of the DFIG stator current respectively, so as to suppress the sub-synchronous current at different frequencies in the DFIG stator, so as to avoid the power generation system output being affected by power grid sub-synchronous oscillation. Finally, the simulation model and experimental platform of DFIG system under sub-synchronous oscillation frequency change are built to simulate the sub-synchronous oscillation of power grid with different frequencies, and the inhibition effect of DFIG stator oscillation current when using quasi-resonant control and adaptive quasi-resonant control is verified respectively. Simulation results show that the backstepping controller can realize the decoupling control of DFIG output power under steady state conditions, and the adaptive quasi-resonant controller can suppress the sub-synchronous component of stator current in a wider frequency range than the quasi-resonant controller. The experimental results show that when the parameters of the quasi-resonant controller are determined, the sub-synchronous oscillations in the DFIG system can only be suppressed within a specific frequency range, while the adaptive quasi-resonant controller can suppress the sub-synchronous oscillations in the DFIG system over a wide band range. The mechanism analysis and suppression strategy of sub-synchronous oscillation proposed in this paper can be further extended to the stability research of grid side converter and phase locked loop under sub-synchronous oscillation of power grid.
|
Received: 30 December 2021
|
|
|
|
|
[1] 刘其辉, 逄思敏, 吴林林, 等. 大规模风电汇集系统电压不平衡机理、因素及影响规律[J]. 电工技术学报,2022, 37(21): 5435-5450. Liu Qihui, Pang Simin, Wu Linlin, et al.The mechanism, factors and influence rules of voltage imbalance in wind power integration areas[J]. Transactions of China Electrotechnical Society, 2022, 37(21): 5435-5450. [2] 邓王博, 王海云, 常喜强, 等. 大规模双馈风电场次同步振荡的成因分析[J]. 高压电器, 2019, 55(9): 215-221. Deng Wangbo, Wang Haiyun, Chang Xiqiang, et al.Cause analysis on subsynchronous oscillation in large-scale doubly-fed wind farm[J]. High Voltage Apparatus, 2019, 55(9): 215-221. [3] 刁涵彬, 李培强, 吕小秀, 等. 考虑多元储能差异性的区域综合能源系统储能协同优化配置[J]. 电工技术学报, 2021, 36(1): 151-165. Diao Hanbin, Li Peiqiang, Lü Xiaoxiu, et al.Coordinated optimal allocation of energy storage in regional integrated energy system considering the diversity of multi-energy storage[J]. Transactions of China Electrotechnical Society, 2021, 36(1): 151-165. [4] 李明节, 于钊, 许涛, 等. 新能源并网系统引发的复杂振荡问题及其对策研究[J]. 电网技术, 2017, 41(4): 1035-1042. Li Mingjie, Yu Zhao, Xu Tao, et al.Study of complex oscillation caused by renewable energy integration and its solution[J]. Power System Technology, 2017, 41(4): 1035-1042. [5] 朱林, 钟丹婷, 王贝, 等. 含转子侧控制器的双馈风机建模与次同步振荡机理分析[J]. 电力系统自动化, 2021, 45(13): 40-48. Zhu Lin, Zhong Danting, Wang Bei, et al.Modeling of doubly-fed wind turbine with rotor-side converter control and mechanism analysis of subsynchronous oscillation[J]. Automation of Electric Power Systems, 2021, 45(13): 40-48. [6] Zhang Xu, Xie Xiaorong, Shair J, et al.A grid-side subsynchronous damping controller to mitigate unstable SSCI and its hardware-in-the-loop tests[J]. IEEE Transactions on Sustainable Energy, 2020, 11(3): 1548-1558. [7] 麻秀范, 王戈, 朱思嘉, 等. 计及风电消纳与发电集团利益的日前协调优化调度[J]. 电工技术学报, 2021, 36(3): 579-587. Ma Xiufan, Wang Ge, Zhu Sijia, et al.Coordinated day-ahead optimal dispatch considering wind power consumption and the benefits of power generation group[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 579-587. [8] 薛安成, 付潇宇, 乔登科, 等. 风电参与的电力系统次同步振荡机理研究综述和展望[J]. 电力自动化设备, 2020, 40(9): 118-128. Xue Ancheng, Fu Xiaoyu, Qiao Dengke, et al.Review and prospect of research on sub-synchronous oscillation mechanism for power system with wind power participation[J]. Electric Power Automation Equipment, 2020, 40(9): 118-128. [9] 钱纹, 赵岳恒, 胡凯, 等. 双馈风电场并网次同步振荡分析与抑制方法研究[J]. 电气自动化, 2021(1): 41-44. Qian Wen, Zhao Yueheng, Hu Kai, et al.Analysis of grid connection sub-synchronous oscillation and research of suppression method in doubly-fed wind farms[J]. Electrical Automation, 2021(1): 41-44. [10] 高本锋, 张学伟, 李忍. 大规模风电送出系统的次同步振荡问题研究综述[J]. 电气工程学报, 2015, 10(7): 1-10. Gao Benfeng, Zhang Xuewei, Li Ren.Studies of sub-synchronous oscillation in system with large-scale wind power transmission[J]. Journal of Electrical Engineering, 2015, 10(7): 1-10. [11] 王伟胜, 张冲, 何国庆, 等. 大规模风电场并网系统次同步振荡研究综述[J]. 电网技术, 2017, 41(4): 1050-1060. Wang Weisheng, Zhang Chong, He Guoqing, et al.Overview of research on subsynchronous oscillations in large-scale wind farm integrated system[J]. Power System Technology, 2017, 41(4): 1050-1060. [12] 姜齐荣, 王亮, 谢小荣. 电力电子化电力系统的振荡问题及其抑制措施研究[J]. 高电压技术, 2017, 43(4): 1057-1066. Jiang Qirong, Wang Liang, Xie Xiaorong.Study on oscillations of power-electronized power system and their mitigation schemes[J]. High Voltage Engineering, 2017, 43(4): 1057-1066. [13] 谢小荣, 刘华坤, 贺静波, 等. 电力系统新型振荡问题浅析[J]. 中国电机工程学报, 2018, 38(10): 2821-2828, 3133. Xie Xiaorong, Liu Huakun, He Jingbo, et al.On new oscillation issues of power systems[J]. Proceedings of the CSEE, 2018, 38(10): 2821-2828, 3133. [14] Meng Fanyi, Sun Dongyang, Zhou Kai, et al.A sub-synchronous oscillation suppression strategy for doubly fed wind power generation system[J]. IEEE Access, 2021, 9: 83482-83498. [15] 张学广, 邱望明, 方冉, 等. 基于变流器改进控制的双馈风电机组SSO抑制方法[J]. 电机与控制学报, 2020, 24(2): 1-9. Zhang Xueguang, Qiu Wangming, Fang Ran, et al.SSO mitigation method of DFIG based on improved control of converter[J]. Electric Machines and Control, 2020, 24(2): 1-9. [16] 党存禄, 李旭鹏, 孙海斌, 等. 双馈风电机组次同步控制相互作用的抑制方法[J]. 电气工程学报, 2021, 16(1): 119-126. Dang Cunlu, Li Xupeng, Sun Haibin, et al.Suppression method for sub-synchronous control interaction of doubly-fed induction generators[J]. Journal of Electrical Engineering, 2021, 16(1): 119-126. [17] 高本锋, 胡韵婷, 李忍, 等. 基于自抗扰控制的双馈风机次同步控制相互作用抑制策略研究[J]. 电网技术, 2019, 43(2): 655-663. Gao Benfeng, Hu Yunting, Li Ren, et al.Research on subsynchronous control interaction mitigation strategy based on active disturbance rejection control for doubly-fed induction generator[J]. Power System Technology, 2019, 43(2): 655-663. [18] Liu Huakun, Xie Xiaorong, He Jingbo, et al.Subsynchronous interaction between direct-drive PMSG based wind farms and weak AC networks[J]. IEEE Transactions on Power Systems, 2017, 32(6): 4708-4720. [19] 李江, 许高阳. 双馈风电场次同步控制相互作用仿真研究[J]. 智能电网, 2016, 4(11): 1082-1092. Li Jiang, Xu Gaoyang.Simulation study on sub-synchronous control interaction of a DFIG-based wind farm[J]. Smart Grid, 2016, 4(11): 1082-1092. [20] 赵雪娇, 彭志炜, 谭洪林, 等. 双馈风力发电机次同步扭振研究[J]. 电力科学与工程, 2018, 34(5): 12-17. Zhao Xuejiao, Peng Zhiwei, Tan Honglin, et al.Sub-synchronous torsional interaction analysis of doubly-fed wind generator[J]. Electric Power Science and Engineering, 2018, 34(5): 12-17. [21] 陈鹏伟, 戚陈陈, 陈新, 等. 附加频率控制双馈风电场频率响应特性建模与参数辨识[J]. 电工技术学报, 2021, 36(15): 3293-3307. Chen Pengwei, Qi Chenchen, Chen Xin, et al.Frequency response modeling and parameter identification of doubly-fed wind farm with additional frequency control[J]. Transactions of China Electrotechnical Society, 2021, 36(15): 3293-3307. [22] 王也, 徐茂达, 郝文波, 等. 双馈感应风机控制环节对电力系统机电小干扰稳定的影响分析[J]. 电气技术, 2019, 20(9): 31-38. Wang Ye, Xu Maoda, Hao Wenbo, et al.Analysis of electromechanical small-signal stability of power system as affected by control-links of doubly fed induction generator[J]. Electrical Engineering, 2019, 20(9): 31-38. [23] Xiong Pinghua, Sun Dan.Backstepping-based DPC strategy of a wind turbine-driven DFIG under normal and harmonic grid voltage[J]. IEEE Transactions on Power Electronics, 2016, 31(6): 4216-4225. [24] Ding Yue, Kang Erliang, Wang Shuai, et al.Disturbance suppression for PMSM by a non-linear composite controller based on two-channel strategy[J]. IET Electric Power Applications, 2020, 14(1): 31-40. [25] 薛花, 潘哲晓, 王育飞, 等. 基于端口受控耗散哈密顿系统模型的模块化多电平变换器无源反步环流抑制方法[J]. 电工技术学报, 2020, 35(12): 2596-2611. Xue Hua, Pan Zhexiao, Wang Yufei, et al.MMC passivity-based and backstepping circulating current suppressing method based on port-controlled Hamiltonian with dissipation model[J]. Transactions of China Electrotechnical Society, 2020, 35(12): 2596-2611. [26] 杨俊华, 蔡浩然, 邹子君, 等. 双馈风电系统混沌运动分析及解耦自适应反步法控制[J]. 太阳能学报, 2019, 40(12): 3605-3612. Yang Junhua, Cai Haoran, Zou Zijun, et al.Chaos analysis and decoupling adaptive backstepping control of doubly fed wind power system[J]. Acta Energiae Solaris Sinica, 2019, 40(12): 3605-3612. [27] 陈杰, 刁利军, 杜会卿, 等. 基于新型谐振控制器的辅助逆变器控制策略[J]. 电工技术学报, 2013, 28(8): 107-113, 119. Chen Jie, Diao Lijun, Du Huiqing, et al.Research of auxiliary inverter control strategy based on new resonant controller[J]. Transactions of China Electrotechnical Society, 2013, 28(8): 107-113, 119. [28] 宋亦鹏, 年珩. 谐波电网电压下基于矢量谐振控制的双馈异步发电机集成控制策略[J]. 电工技术学报, 2014, 29(7): 187-199. Song Yipeng, Nian Heng.Integrated control strategy of DFIG based on vector resonant control under distorted grid voltage conditions[J]. Transactions of China Electrotechnical Society, 2014, 29(7): 187-199. |
|
|
|