|
|
Simulation and Ultraviolet Spectral Characteristics of Glow-Like Discharge Along the Surface of Porcelain Insulators Considering the Influences of the Humidity and Atmospheric Pressure |
Li Yonglin1,2, Huang Shilong1,2, Liu Yunpeng1,2, Geng Jianghai1,2, Niu Leilei1,2 |
1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 China; 2. Hebei Provincial Key Laboratory of Power Transmission Equipment Security Defense North China Electric Power University Baoding 071003 China |
|
|
Abstract Changes in environmental factors may exert significant influences on the ultraviolet (UV) imaging detection results of discharge on polluted porcelain insulators and then affect the accuracy of subsequent UV detection results. This makes it necessary to analyze influences of environmental factors on UV discharge detection of polluted porcelain insulators. Studying the surface air discharge process using a numerical simulation model can describe the macroscopic discharge process; It also can explain problems including the formation, diffusion, migration, and disappearance of key particles in the discharge process from a more microscopic perspective. However, existing research using a simulation model for surface discharge seldom focuses on particles that induce light radiation in the solar-blind UV region in the discharge process and chemical reaction of these particles. In view of this, influences of the humidity and atmospheric pressure on the formation process of light radiation in the solar-blind UV region during glow-like discharge along the surface of porcelain insulators were evaluated from macroscopic and microscopic perspectives by combining the tests and a simulation model. A discharge test platform for polluted porcelain insulators was established, then, a spectrograph was used to acquire emission spectra of glow-like discharge in the solar-blind UV region (240 to 280 nm) under different humidifies and atmospheric pressures. Thereafter, a two-dimensional (2D) simulation model for glow-like discharge along the surface of porcelain insulators in the humid air was established using finite element software according to the test parameters and spectral analysis results. Changes in the number density and rate of formation of microscopic particles in the discharge area were obtained through simulation. Finally, the test analysis and simulation results were integrated to reveal the mechanisms causing changes in light radiation intensity in the solar-blind UV region under different humidifies and atmospheric pressures. Analysis of emission spectra of glow-like discharge along the surface of porcelain insulators in the tests indicates that the formation of light radiation in the solar-blind UV region is related to the de-excitation reactions of excited particles N2(A) and NO(A). Meanwhile, excited particles N2(B) and N2(C) are quickly de-excited into N2(A) in the discharge process, which indirectly influences light radiation intensity in the solar-blind UV region by altering the number of particles N2(A). The analysis results are an important basis for establishing the 2D simulation model for glow-like discharge along the surface of porcelain insulators. Through simulation, the radial distribution of the electric field intensity, electric current density, and electron density on the plate surfaces could be determined. This verified that the established discharge simulation model is at the glow-like discharge stage in numerical simulation, which conforms to the discharge stage in the tests. Hence, the simulation model can be used to characterize the glow-like discharge process along the surface of porcelain insulators in the tests. The acquired discharge spectra and simulation results were combined and analyzed. The results show that when the humidity increases, the number density and rate of formation of particles N2(A) and NO(A) in the discharge area tend to grow, enhancing the light radiation intensity in the solar-blind UV region induced by discharge. When the atmospheric pressure decreases, the number density and formation rate of particles N2(A) and NO(A) increase in the discharge area. As a result, the light radiation intensity in the solar-blind UV region induced by discharge increases. In the meantime, changes in the humidity and atmospheric pressure only affect the number, distribution, and rate of reaction of relevant particles in the discharge area while do not influence whether the chemical reactions happen or not. When combining the present research with previous research results arising from the use of transmission models of light radiation in the solar-blind UV region, the UV discharge detection results can be converted from UV spot areas to an objective physical quantity, namely, spectral irradiance. This can avoid influences of the difference in UV imager models on the detection results and further achieve quantitative analysis of the UV detection results in the future.
|
Received: 17 September 2022
|
|
|
|
|
[1] Banik A, Mukherjee A, Dalai S.Development of a pollution flashover model for 11 kV porcelain and silicon rubber insulator by using COMSOL multiphysics[J]. Electrical Engineering, 2018, 100(2): 533-541. [2] Ibrahim M E, Abd-Elhady A M, Sabiha N A, et al. Dynamic flashover model considering pollution layer resistance variation for fixed washed high voltage insulators[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(5): 2960-2967. [3] Zhang Zhijin, Zhao Jiayao, Zhang Dongdong, et al.Study on the DC flashover performance of standard suspension insulator with ring-shaped non-uniform pollution[J]. High Voltage, 2018, 3(2): 133-139. [4] 任明, 夏昌杰, 余家赫, 等. 绝缘子沿面放电多光谱脉冲演化特性及诊断方法研究[J]. 电工技术学报, 2023, 38(3): 806-817. Ren Ming, Xia Changjie, Yu Jiahe, et al.Multispectral pulse evolution of insulator surface discharges and its diagnosis approach[J]. Transactions of China Electrotechnical Society, 2023, 38(3): 806-817 [5] Pei Shaotong, Liu Yunpeng, Ji Xinxin, et al.UV-flashover evaluation of porcelain insulators based on deep learning[J]. IET Science, Measurement & Technology, 2018, 12(6): 770-776. [6] 律方成, 牛雷雷, 王胜辉, 等. 基于紫外成像和改进YOLOv3的瓷悬式绝缘子放电严重程度评估[J]. 高电压技术, 2021, 47(2): 377-386. Lü Fangcheng, Niu Leilei, Wang Shenghui, et al.Discharge severity assessment of porcelain suspension insulators based on UV images and improved YOLOv3[J]. High Voltage Engineering, 2021, 47(2): 377-386. [7] Lü Fangcheng, Niu Leilei, Wang Shenghui, et al.Influencing of water droplets on corona inception characteristics of composite insulator recorded by UV imager[J]. IET Science, Measurement & Technology, 2020, 14(10): 1049-1056. [8] 冯智慧, 张广洲, 吴健, 等. 超高压交流变电站金具电晕特性与选型研究[J]. 智慧电力, 2022, 50(8): 82-88. Feng Zhihui, Zhang Guangzhou, Wu Jian, et al.Corona characteristics and type selection of EHV AC substation fittings[J]. Smart Power, 2022, 50(8): 82-88. [9] 黎振宇. 输变电设备外绝缘放电紫外成像检测方法研究[D]. 重庆: 重庆大学, 2016. [10] 王胜辉. 基于紫外成像的污秽悬式绝缘子放电检测及评估[D]. 北京: 华北电力大学, 2011. [11] 田迪凯, 罗日成, 张宇飞, 等. 基于紫外成像检测技术的不同检测距离下光子数的修正[J]. 电气技术, 2021, 22(2): 30-35. Tian Dikai, Luo Richeng, Zhang Yufei, et al.Correction of photon number at different detection distances based on ultraviolet imaging detection technology[J]. Electrical Engineering, 2021, 22(2): 30-35. [12] Liu Yunpeng, Li Yonglin, Geng Jianghai, et al.A consistency method of discharge detection results at solar-blind ultraviolet based on a radiation transmission model[J]. IET Science, Measurement & Technology, 2022, 16(4): 250-259. [13] 刘春香. 沿面放电的非平衡态等离子体模型及发展过程影响因素分析[D]. 重庆: 重庆大学, 2017. [14] 李彦飞, 汤贝贝, 韩冬, 等. SF6放电的发射光谱特性分析与放电识别[J]. 电工技术学报, 2022, 37(7): 1866-1874. Li Yanfei, Tang Beibei, Han Dong, et al.Spectroscopy analysis of emission spectrum characteristics and discharge recognition of SF6 gas discharge[J]. Transactions of China Electrotechnical Society, 2022, 37(7): 1866-1874. [15] 孙汉文. 原子光谱分析[M]. 北京: 高等教育出版社, 2002. [16] Wang Lanbo, Chen She, Wang Feng.Kinetic modelling of atmospheric pressure corona discharges in humid air[J]. Plasma Chemistry and Plasma Processing, 2019, 39(5): 1291-1315. [17] Sakiyama Y, Graves D B, Chang H W, et al.Plasma chemistry model of surface microdischarge in humid air and dynamics of reactive neutral species[J]. Journal of Physics D: Applied Physics, 2012, 45(42): 425201. [18] 张颖. 大气压沿面型介质阻挡放电光电特性实验和模拟研究[D]. 大连: 大连理工大学, 2016. [19] 彭庆军, 刘春香, 司马文霞, 等. 大气压空气沿面放电的二维仿真[C]//中国电机工程学会高电压专业委员会学术年会, 西安, 中国, 2015: 1-7. [20] 李帆, 罗海云, 杜娟, 等. 基于直流辉光放电等离子体的气体压力传感器[J]. 电工技术学报, 2021, 36(15): 3163-3171. Li Fan, Luo Haiyun, Du Juan, et al.Pressure sensor based on direct current discharge plasma[J]. Transactions of China Electrotechnical Society, 2021, 36(15): 3163-3171. [21] 赵志航, 魏新劳, 姚远航, 等. 低温次大气压不均匀电场空气流注放电特性研究[J/OL]. 中国电机工程学报: 1-13. DOI: 10.13334/j.0258-8013.pcsee.213012. Zhao Zhihang, Wei Xinlao, Yao Yuanhang, et al.Study on discharge characteristics of non-uniform electric field air streamer at low temperature and sub atmospheric pressure[J/OL]. Proceedings of the CSEE: 1-13. DOI: 10.13334/j.0258-8013.pcsee.213012. [22] 张静岚, 符瑜科, 卢铁兵, 等. 交直流复合电压下棒-板电极起晕电压实验分析[J]. 电工技术学报, 2017, 32(4): 180-188. Zhang Jinglan, Fu Yuke, Lu Tiebing, et al.Experimental analysis on corona inception voltage of rod-plane air gaps under DC and AC composite voltage[J]. Transactions of China Electrotechnical Society, 2017, 32(4): 180-188. [23] Zhang Zhenjun, Ji Qingqun, Zhu Zhenhua, et al.Atmosphere dependence of DC surface flashover voltage of insulators[C]//2020 5 th Asia Conference on Power and Electrical Engineering (ACPEE), Chengdu, China, 2020: 1350-1354. [24] 朱明曦, 王黎明. 具有强垂直分量结构沿面放电现象及特征[J]. 电工技术学报, 2020, 35(10): 2266-2274. Zhu Mingxi, Wang Liming.Surface discharge phenomenon and properties of strong-vertical electric field electrode structures[J]. Transactions of China Electrotechnical Society, 2020, 35(10): 2266-2274. [25] 杨忠毅. 绝缘子表面污秽成分检测方法及成分对交流污闪特性的影响研究[D]. 重庆: 重庆大学, 2019. [26] 刘云鹏, 刘嘉硕, 裴少通, 等. 雾室环境下污秽度和湿度对瓷质绝缘子放电特性的影响[J]. 绝缘材料, 2021, 54(4): 86-90. Liu Yunpeng, Liu Jiashuo, Pei Shaotong, et al.Effects of pollution and humidity on discharge characteristics of porcelain insulators in fog chamber environment[J]. Insulating Materials, 2021, 54(4): 86-90. [27] Trinh N G.Partial discharge XIX: discharge in air part I: physical mechanisms[J]. IEEE Electrical Insulation Magazine, 1995, 11(2): 23-29. [28] 余哲, 杨海东, 杜还, 等. 大气压针板介质阻挡放电中微流注、电晕和辉光放电相互转换研究[J]. 高电压技术, 2013, 39(10): 2553-2559. Yu Zhe, Yang Haidong, Du Huan, et al.Transition of streamer, corona and glow discharges in needle-to-plane dielectric barrier discharge at atmospheric pressure air[J]. High Voltage Engineering, 2013, 39(10): 2553-2559. [29] 王新新. 介质阻挡放电及其应用[J]. 高电压技术, 2009, 34(1): 1-11. Wang Xinxin.Dielectric barrier discharge and its applications[J]. High Voltage Engineering, 2009, 34(1): 1-11. [30] Reuter S, von Woedtke T, Weltmann K D. The kINPen—a review on physics and chemistry of the atmospheric pressure plasma jet and its applications[J]. Journal of Physics D: Applied Physics, 2018, 51(23): 233001. [31] Piper L G, Cowles L M, Rawlins W T.State-to-state excitation of NO(A 2Σ+, v’=0, 1, 2) by N2(A 3Σ+u, v’=0, 1, 2)[J]. The Journal of Chemical Physics, 1986, 85(6): 3369-3378. [32] Lofthus A, Krupenie P H.The spectrum of molecular nitrogen[J]. Journal of Physical and Chemical Reference Data, 1977, 6(1): 113-307. [33] Herzberg G, Spinks J W T. Molecular spectra and molecular structure[M]. 2nd ed. Princeton: Van Nostrand, 1950. [34] Kossyi I A, Yu Kostinsky A, Matveyev A A, et al.Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures[J]. Plasma Sources Science and Technology, 1992, 1(3): 207-220. [35] Liu Lipeng, Becerra M.Gas heating dynamics during leader inception in long air gaps at atmospheric pressure[J]. Journal of Physics D: Applied Physics, 2017, 50(34): 345202. [36] IST-Lisbon Database[DB/OL]. (2019-12-16) [2022-08-25]. www.lxcat.net. [37] Itikawa Database[DB/OL]. (2012-06-05) [2022-08-25]. www.lxcat.net. [38] Liu Xinghua, Xian Richang, Yu Peng, et al.Numerical simulation transient electron distribution of direct current negative corona discharge in air[J]. IOP Conference Series: Earth and Environmental Science, 2017, 64: 012102. [39] 西安交通大学荣命哲教授团队. “气体放电等离子体基础数据”网站正式发布[J]. 电工技术学报, 2020, 35(11): 2438. [40] 付洋洋, 罗海云, 邹晓兵, 等. 棒-板电极下缩比气隙辉光放电相似性的仿真研究[J]. 物理学报, 2014, 63(9): 095206. Fu Yangyang, Luo Haiyun, Zou Xiaobing, et al.Simulation on similarity law of glow discharge in scale-down gaps of rod-plane electrode configuration[J]. Acta Physica Sinica, 2014, 63(9): 095206. [41] 廉乐明, 谭羽非, 吴家正. 工程热力学[M]. 5版. 北京: 中国建筑工业出版社, 2007. [42] 张以宁. 介质阻挡放电等离子体放电过程数值模拟及气动激励特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. [43] 彭庆军. 空气中流注放电等离子体化学模型研究及其影响因素分析[D]. 重庆: 重庆大学, 2012. [44] 武占成, 张希军, 胡有志. 气体放电[M]. 北京: 国防工业出版社, 2012. [45] 王奇. 大气压辉光放电模式及均匀性数值模拟研究[D]. 大连: 大连理工大学, 2011. [46] 谢梁, 花广如, 崔云骧, 等. 湿度对棒-板间隙电晕特性的影响规律[J]. 南方电网技术, 2021, 15(7): 90-95. Xie Liang, Hua Guangru, Cui Yunxiang, et al.Influence of humidity on the corona characteristics of the bar-plate gap[J]. Southern Power System Technology, 2021, 15(7): 90-95. [47] 杜新宇. 湿度对电晕放电参数及直流起晕电压影响研究[D]. 武汉: 武汉大学, 2019. |
|
|
|