|
|
Flexible Frequency Regulation Scheme of DFIG embed Battery Energy Storage System Considering Deadbands |
Yang Dejian1, Wang Xin1, Yan Gangui1, Jin Enshu1, Jin Zhaoyang2 |
1. Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology Ministry of Education Northeast Electric Power University Jilin 132012 China; 2. Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education Shandong University Jinan 250061 China |
|
|
Abstract Doubly-fed induction generator (DFIG) can take part in system frequency regulation (SFR) by releasing its kinetic energy of rotor, but the available kinetic energy is limited. DFIG excessive involvement in SFR would lead to the reduction of wind energy utilization, the sudden increase of mechanical stress, and even the instability of DFIG; as a high quality source of frequency regulation, energy storage system (ESS) has the advantages of fast throughput power and flexible control capability, but the frequently charging and discharging of ESS accelerates its electrical aging and reduces its service life. Aiming at issues of the mechanical stress and service life of DFIG and ESS, this paper addresses a flexible frequency regulation scheme of DFIG-embed ESSs based on the artificial deadbands. Firstly, this paper established a frequency response model taking into account the frequency deadbands regulation of the DFIG-embed ESS, and further analyzed the influences of the artificial deadbands on the system frequency dynamics; secondly, the artificial deadbands was used to ensure the activation and limit the depth of the frequency regulation of the DFIG-embed ESS, the frequency response process of the disturbed system was divided into: no response band, response band of DFIG, transaction band of DFIG and ESS, and response band of ESS. DFIG participates in SFR to mitigate the grid frequency fluctuations considering the rotational kinetic energy available from the DFIG, the issues of mechanical stress caused by sudden power change of the DFIG is alleviated during transaction band of DFIG and ESS; ESS provides SFR function to arrest the grid frequency variation taking into account the condition of state-of-charge constraints. Finally, power system model with various wind power penetrations and disturbances was modeled based on an EMTP-RV to investigate the effectiveness of the proposed a flexible SFE scheme of DFIG-embed battery energy storage system. Simulation results on the different SFR schemes illustrate that, in the case of only fluctuating wind speed, the maximum positive frequency deviation and maximum negative frequency deviation are respectively 0.21Hz and 0.19Hz; when the system only uses ESS to take part in SFR, the maximum positive frequency deviation and maximum negative frequency deviation are reduced to 0.15Hz, 0.15Hz, respectively; but ESS performs six shallow charges and discharges (which has potential to adversely influence on the service life of ESS for a long period); when the system uses the frequency regulation strategy proposed in this paper, the system achieves the similar frequency regulation performance as ESS frequency regulation. In the case that the synchronous machine is offline, when the system only uses DFIG to take part in SFR, the frequency nadir is raised to 59.54Hz, but DFIG excessive involvement in SFR to cause drivetrain torque angle uprush to 0.41 deg. and the lowest rotor speed drops to 0.79(pu); when the system uses the frequency regulation strategy proposed in this paper, DFIG and ESS take part in SFR by using the reasonable setting of the deadbands, the frequency nadir is raised to 59.42Hz. In the case of a large disturbance with a high wind penetration level, the proposed frequency regulation strategy could achieve the similar SFR performances with other strategies, e.g. reduces the DFIG frequency regulation depth and relieves the ESS frequently charging and discharging phenomenon. The following conclusions can be drawn from the simulation analysis: the sequent frequency regulation control strategy of DFIG and ESS is realized by using the reasonable setting of the deadbands, which can effectively avoid the excessive frequency regulation of DFIG, and alleviate the phenomenon of reducing the service life of ESS caused by frequent charging and discharging.
|
Received: 31 May 2022
|
|
|
|
|
[1] 丁剑, 方晓松, 宋云亭, 等. 碳中和背景下西部新能源传输的电氢综合能源网构想[J]. 电力系统自动化, 2021, 45(24): 1-9. Ding Jian, Fang Xiaosong, Song Yunting, et al.Conception of electricity and hydrogen integrated energy network for renewable energy transmission in Western China under background of carbon neutralization[J]. Automation of Electric Power Systems, 2021, 45(24): 1-9. [2] 李军徽, 侯涛, 穆钢, 等. 电力市场环境下考虑风电调度和调频极限的储能优化控制[J]. 电工技术学报, 2021, 36(9): 1791-1804. Li Junhui, Hou Tao, Mu Gang, et al.Optimal control strategy for energy storage considering wind farm scheduling plan and modulation frequency limitation under electricity market environment[J]. Transactions of China Electrotechnical Society, 2021, 36(9): 1791-1804. [3] 朱博, 徐攀腾, 刘科, 等. 柔性直流与风电协同的受端系统频率调控方法[J]. 东北电力大学学报, 2021, 41(2): 86-93. Zhu Bo, Xu Panteng, Liu Ke, et al.Frequency control method for receiving end power system by DFIG and VSC-HVDC[J]. Journal of Northeast Electric Power University, 2021, 41(2): 86-93. [4] 王洋, 杜文娟, 王海风. 风电并网系统次同步振荡频率漂移问题[J]. 电工技术学报, 2020, 35(1): 146-157. Wang Yang, Du Wenjuan, Wang Haifeng.Frequency drift of sub-synchronous oscillation in wind turbine generator integrated power system[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 146-157. [5] 颜湘武, 宋子君, 崔森, 等. 基于变功率点跟踪和超级电容器储能协调控制的双馈风电机组一次调频策略[J]. 电工技术学报, 2020, 35(3): 530-541. Yan Xiangwu, Song Zijun, Cui Sen, et al.Primary frequency regulation strategy of doubly-fed wind turbine based on variable power point tracking and supercapacitor energy storage[J]. Transactions of China Electrotechnical Society, 2020, 35(3): 530-541. [6] 穆钢, 蔡婷婷, 严干贵, 等. 双馈风电机组参与持续调频的双向功率约束及其影响[J]. 电工技术学报, 2019, 34(8): 1750-1759. Mu Gang, Cai Tingting, Yan Gangui, et al.Bidirectional power constraints and Influence of doubly fed induction generator participating in continuous frequency regulation[J]. Transactions of China Electrotechnical Society, 2019, 34(8): 1750-1759. [7] Lee J, Jang G, Muljadi E, et al.Stable short-term frequency support using adaptive gains for a DFIG-based wind power plant[J]. IEEE Transactions on Energy Conversion, 2016, 31(3): 1068-1079. [8] Margaris I D, Papathanassiou S A, Hatziargyriou N D, et al.Frequency control in autonomous power systems with high wind power penetration[J]. IEEE Transactions on Sustainable Energy, 2012, 3(2): 189-199. [9] Yang Peihong, He Bin, Wang Biao, et al.Coordinated control of rotor kinetic energy and pitch angle for large-scale doubly fed induction generators participating in system primary frequency regulation[J]. IET Renewable Power Generation, 2021, 15(8): 1836-1847. [10] 颜湘武, 崔森, 常文斐. 考虑储能自适应调节的双馈感应发电机一次调频控制策略[J]. 电工技术学报, 2021, 36(5): 1027-1039. Yan Xiangwu, Cui Sen, Chang Wenfei.Primary frequency regulation control strategy of doubly-fed induction generator considering supercapacitor SOC feedback adaptive adjustment[J]. Transactions of China Electrotechnical Society, 2021, 36(5): 1027-1039. [11] 熊连松, 修连成, 王慧敏, 等. 储能系统抑制电网功率振荡的机理研究[J]. 电工技术学报, 2019, 34(20): 4373-4380. Xiong Liansong, Xiu Liancheng, Wang Huimin, et al.Mechanism of energy storage system to suppress grid power oscillations[J]. Transactions of China Electrotechnical Society, 2019, 34(20): 4373-4380. [12] 李军徽, 侯涛, 穆钢, 等. 基于权重因子和荷电状态恢复的储能系统参与一次调频策略[J]. 电力系统自动化, 2020, 44(19): 63-72. Li Junhui, Hou Tao, Mu Gang, et al.Primary frequency regulation strategy with energy storage system based on weight factors and state of charge recovery[J]. Automation of Electric Power Systems, 2020, 44(19): 63-72. [13] 马智慧, 李欣然, 谭庄熙, 等. 考虑储能调频死区的一次调频控制方法[J]. 电工技术学报, 2019, 34(10): 2102-2115. Ma Zhihui, Li Xinran, Tan Zhuangxi, et al.Integrated control of primary frequency regulation considering dead band of energy storage[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2102-2115. [14] 高飞, 杨凯, 惠东, 等. 储能用磷酸铁锂电池循环寿命的能量分析[J]. 中国电机工程学报, 2013, 33(5): 41-45, 8. Gao Fei, Yang Kai, Hui Dong, et al.Cycle-life energy analysis of LiFePO4 batteries for energy storage[J]. Proceedings of the CSEE, 2013, 33(5): 41-45, 8. [15] Miao Lu, Wen Jinyu, Xie Hailian, et al.Coordinated control strategy of wind turbine generator and energy storage equipment for frequency support[C]//2014 IEEE Industry Application Society Annual Meeting, Vancouver, BC, Canada, 2014: 1-7. [16] Dang Jie, Seuss J, Suneja L, et al.SoC feedback control for wind and ESS hybrid power system frequency regulation[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2014, 2(1): 79-86. [17] 刘巨, 姚伟, 文劲宇, 等. 一种基于储能技术的风电场虚拟惯量补偿策略[J]. 中国电机工程学报, 2015, 35(7): 1596-1605. Liu Ju, Yao Wei, Wen Jinyu, et al.A wind farm virtual inertia compensation strategy based on energy storage system[J]. Proceedings of the CSEE, 2015, 35(7): 1596-1605. [18] 刘辉, 葛俊, 巩宇, 等. 风电场参与电网一次调频最优方案选择与风储协调控制策略研究[J]. 全球能源互联网, 2019, 2(1): 44-52. Liu Hui, Ge Jun, Gong Yu, et al.Optimization scheme selection of wind farm participation in grid primary frequency modulation and study of wind-storage coordination control strategy[J]. Journal of Global Energy Interconnection, 2019, 2(1): 44-52. [19] 金娜, 刘文颖, 曹银利, 等. 大容量机组一次调频参数对电网频率特性的影响[J]. 电力系统保护与控制, 2012, 40(1): 91-95, 100. Jin Na, Liu Wenying, Cao Yinli, et al.Influence on the grid frequency characteristic by the parameters of primary frequency modulation of large capacity generator units[J]. Power System Protection and Control, 2012, 40(1): 91-95, 100. [20] 黄俊凯, 杨知方, 余娟, 等. 面向频率稳定校核的风机快速频率响应低阶建模方法及其误差分析[J]. 中国电机工程学报, 2022, 42(18): 6752-6766. Huang Junkai, Yang Zhifang, Yu Juan, et al.Low-order modeling of wind turbine-based fast frequency response and its error analysis for frequency stability assessment[J]. Proceedings of the CSEE, 2022, 42(18): 6752-6766. [21] Zalosh R, Gandhi P, Barowy A.Lithium-ion energy storage battery explosion incidents[J]. Journal of Loss Prevention in the Process Industries, 2021, 72: 104560. [22] Machowski J, Bialek J W, Bumby J R.Power system dynamics: stability and control[M]. 2nd ed. Chichester, UK: Wiley, 2008. |
|
|
|