|
|
Fault Propagation Mechanism of Hybrid Microgrid with Neutral Grounding of DC Side Capacitor |
Zhang Yi1, Zhang Baifu1, Han Xiaoqing1, Ren Chunguang1, Zhao Zhibo2 |
1. Shanxi Key Laboratory of Power System Operation and Control Taiyuan University of Technology Taiyuan 030001 China; 2. School of Resources and Geosciences China University of Mining and Technology Xuzhou 221000 China |
|
|
Abstract The AC-DC hybrid microgrid will become an important development form of the future power grid due to the efficient renewable energy consumption performance. However, the interconnection structure of AC-DC hybrid microgrid complicates the fault response and decreases the system robustness. In this paper, the typical structure of hybrid microgrid includes AC sub-grid, DC sub-grid, and a bidirectional power converter (BPC), and the response characteristics of non-fault sub-grid to fault are analyzed. The systematic and complete fault response characteristic analysis results can provide a theoretical basis for the design of hybrid microgrid cooperative control or cooperative protection strategy under fault conditions. The harmonic frequency change principle and the transient process of the fault loop caused by the propagation of fault components between sub-grids under typical fault conditions are analyzed in this paper. On this basis, the voltage and current expressions of the AC and DC sub-grids are deduced respectively with the consideration of the system interconnection structure. And then, the response results of the non-faulty sub-grid to the faulty sub-grid are obtained, which reveals the fault propagation mechanism of the hybrid microgrid. In the state of AC sub-grid fault, the harmonic transformation process caused by the propagation of negative sequence components and zero sequence components generated by symmetrical faults and asymmetric faults through BPC is deeply analyzed, and the general harmonic transformation expression is given. For the inter pole short-circuit fault and single pole grounding fault of DC sub-grid, this paper analyzes the transient process of short-circuit current loop in different stages, and deduces the expression of AC short-circuit current affected by DC sub-grid faults. The magnitude of the short-circuit current under a single-pole grounding fault is related to the BPC switch state. And the short-circuit current is characterized in the form of a piecewise function, by dividing the switch state of BPC, Furthermore, an AC-DC hybrid microgrid model is built and simulated for different fault types based on the Matlab/Simulink platform. And the following conclusions can be drawn: 1) DC bus voltage drop will be caused by three phase short-circuit fault. And the closer the faulted point is to BPC, the greater the drop amplitude is. In addition, (n+1)-th harmonics will be generated in DC sub-grid, when the n-th harmonic on the AC sub-grid is converted to DC sub-grid. And the (n+1)-th harmonics in DC sub-grid will react to the AC sub-grid and generate (n±1)-th harmonics. 2) AC sub-grid can be equivalent to the state of three-phase short-circuit fault, when a inter pole short-circuit occurs in DC sub-grid. In case of single pole grounding fault of DC sub-grid, the freewheeling diode works in the state of uncontrolled rectification, and the AC short-circuit current waveform no longer presents sinusoidal changes due to the unidirectional conduction. At the same time, the error between theoretical derivation and simulation results is less than 5%. Compared with the fault current of single-pole grounding, the fault current increases more rapidly in the inter pole short-circuit fault state by comparing the freewheeling diode current waveforms under two types of faults, which is more likely to damage the switching device.
|
Received: 16 May 2022
|
|
|
|
|
[1] 姜云鹏, 任洲洋, 李秋燕, 等. 考虑多灵活性资源协调调度的配电网新能源消纳策略[J]. 电工技术学报, 2022, 37(7): 1820-1835. Jiang Yunpeng, Ren Zhouyang, Li Qiuyan, et al.An accommodation strategy for renewable energy in distribution network considering coordinated dispatching of multi-flexible resources[J]. Transactions of China Electrotechnical Society, 2022, 37(7): 1820-1835. [2] Nejabatkhah F, Li Yunwei.Overview of power management strategies of hybrid AC/DC microgrid[J]. IEEE Transactions on Power Electronics, 2015, 30(12): 7072-7089. [3] 葛平娟, 肖凡, 涂春鸣, 等. 考虑故障限流的下垂控制型逆变器暂态控制策略[J]. 电工技术学报, 2022, 37(14): 3676-3687. Ge Pingjuan, Xiao Fan, Tu Chunming, et al.Transient control strategy of droop-controlled inverter considering fault current limitation[J]. Transactions of China Electrotechnical Society, 2022, 37(14): 3676-3687. [4] 郭文娇, 任春光, 王磊, 等. 电压不平衡时交直流双向功率变换器的控制策略[J]. 电网技术, 2016, 40(3): 925-930. Guo Wenjiao, Ren Chunguang, Wang Lei, et al.Control method of bidirectional AC/DC converter with unbalanced voltage in hybrid micro-grid[J]. Power System Technology, 2016, 40(3): 925-930. [5] Ren Chunguang, Han Xiaoqing, Wang Lei, et al.High-performance three-phase PWM converter with a reduced DC-link capacitor under unbalanced AC voltage conditions[J]. IEEE Transactions on Industrial Electronics, 2018, 65(2): 1041-1050. [6] Yang Jin, Fletcher J E, O'Reilly J. Short-circuit and ground fault analyses and location in VSC-based DC network cables[J]. IEEE Transactions on Industrial Electronics, 2012, 59(10): 3827-3837. [7] 杨杰, 郑健超, 汤广福, 等. 电压源换相HVDC站内交流母线故障特性及保护配合[J]. 中国电机工程学报, 2010, 30(16): 6-11. Yang Jie, Zheng Jianchao, Tang Guangfu, et al.Internal AC bus fault characteristics of VSC-HVDC system and protection coordination[J]. Proceedings of the CSEE, 2010, 30(16): 6-11. [8] 高一波, 徐习东, 金阳忻, 等. 交流侧接地故障对直流配电网电压平衡影响[J]. 电网技术, 2014, 38(10): 2665-2670. Gao Yibo, Xu Xidong, Jin Yangxin, et al.Impact on the voltage balancing of DC distribution network under AC side grounding fault[J]. Power System Technology, 2014, 38(10): 2665-2670. [9] 朱永强, 刘康, 张泉, 等. 混合微电网交流侧故障传播机理及抑制方法[J]. 电机与控制学报, 2020, 24(4): 1-11. Zhu Yongqiang, Liu Kang, Zhang Quan, et al.Fault propagation mechanism and suppression method on AC side of hybrid microgrid[J]. Electric Machines and Control, 2020, 24(4): 1-11. [10] 董新洲, 汤涌, 卜广全, 等. 大型交直流混联电网安全运行面临的问题与挑战[J]. 中国电机工程学报, 2019, 39(11): 3107-3119. Dong Xinzhou, Tang Yong, Bu Guangquan, et al.Confronting problem and challenge of large scale AC-DC hybrid power grid operation[J]. Proceedings of the CSEE, 2019, 39(11): 3107-3119. [11] 许阔, 王婉君, 贾利虎, 等. 混合微电网交流不对称故障对直流系统的影响[J]. 中国电机工程学报, 2018, 38(15): 4429-4437, 4643. Xu Kuo, Wang Wanjun, Jia Lihu, et al.Influence of AC unbalanced faults on DC system of hybrid AC/DC microgrid[J]. Proceedings of the CSEE, 2018, 38(15): 4429-4437, 4643. [12] 梁旭明, 张平, 常勇. 高压直流输电技术现状及发展前景[J]. 电网技术, 2012, 36(4): 1-9. Liang Xuming, Zhang Ping, Chang Yong.Recent advances in high-voltage direct-current power transmission and its developing potential[J]. Power System Technology, 2012, 36(4): 1-9. [13] 宋金钊, 李永丽, 曾亮, 等. 高压直流输电系统换相失败研究综述[J]. 电力系统自动化, 2020, 44(22): 2-13. Song Jinzhao, Li Yongli, Zeng Liang, et al.Review on commutation failure of HVDC transmission system[J]. Automation of Electric Power Systems, 2020, 44(22): 2-13. [14] 李斌, 何佳伟. 柔性直流配电系统故障分析及限流方法[J]. 中国电机工程学报, 2015, 35(12): 3026-3036. Li Bin, He Jiawei.DC fault analysis and current limiting technique for VSC-based DC distribution system[J]. Proceedings of the CSEE, 2015, 35(12): 3026-3036. [15] 徐可寒, 张哲, 刘慧媛, 等. 光伏电源故障特性研究及影响因素分析[J]. 电工技术学报, 2020, 35(2): 359-371. Xu Kehan, Zhang Zhe, Liu Huiyuan, et al.Study on fault characteristics and its related impact factors of photovoltaic generator[J]. Transactions of China Electrotechnical Society, 2020, 35(2): 359-371. [16] Liu Jian, Tai Nengling, Fan Chunju, et al.A hybrid current-limiting circuit for DC line fault in multiterminal VSC-HVDC system[J]. IEEE Transactions on Industrial Electronics, 2017, 64(7): 5595-5607. [17] Chen Dong, Xu Lie, Yu J.Adaptive DC stabilizer with reduced DC fault current for active distribution power system application[J]. IEEE Transactions on Power Systems, 2017, 32(2): 1430-1439. [18] Baran M E, Mahajan N R.Overcurrent protection on voltage-source-converter-based multiterminal DC distribution systems[J]. IEEE Transactions on Power Delivery, 2007, 22(1): 406-412. [19] 杨美辉, 周念成, 王强钢, 等. 基于分布式协同的双极直流微电网不平衡电压控制策略[J]. 电工技术学报, 2021, 36(3): 634-645. Yang Meihui, Zhou Niancheng, Wang Qianggang, et al.Unbalanced voltage control strategy of bipolar DC microgrid based on distributed cooperation[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 634-645. [20] 李露露, 雍静, 曾礼强, 等. 低压直流双极供电系统的接地型式研究[J]. 中国电机工程学报, 2014, 34(13): 2210-2218. Li Lulu, Yong Jing, Zeng Liqiang, et al.Researches on grounding types of low-voltage DC bipolar distribution systems[J]. Proceedings of the CSEE, 2014, 34(13): 2210-2218. [21] 张兴, 张崇巍. PWM整流器及其控制[M]. 北京: 机械工业出版社, 2012. [22] 薛雪, 王子龙, 王全金, 等. 基于RLC二阶电路的直流配电网故障测距实验设计[J]. 实验技术与管理, 2021, 38(12): 160-164. Xue Xue, Wang Zilong, Wang Quanjin, et al.Experimental design of DC distribution network fault location based on RLC second-order circuit[J]. Experimental Technology and Management, 2021, 38(12): 160-164. [23] 易桂平. 电网电压不平衡条件下微网恒功率控制策略研究[J]. 电工技术学报, 2015, 30(14): 377-387. Yi Guiping.Micro-grid constant power control strategy analysis under grid voltage imbalance[J]. Transactions of China Electrotechnical Society, 2015, 30(14): 377-387. [24] 李斌, 李晔, 何佳伟, 等. 基于模块化多电平的柔性直流系统故障稳态特性分析[J]. 电力系统保护与控制, 2016, 44(21): 1-8. Li Bin, Li Ye, He Jiawei, et al.Stable fault characteristic analysis of the DC system based on modular multilevel converter[J]. Power System Protection and Control, 2016, 44(21): 1-8. |
|
|
|