|
|
Research Advances in Electrical-Magnetic-Thermal-Mechanical Coupling Effects of Electric Contact Between Pantograph and Catenary |
Chen Zhonghua1, Li Binghong1, Chen Mingyang2, Ping Yu2, Guo Fengyi3 |
1. Faculty of Electrical and Control Engineering Liaoning Technical University Huludao 125105 China; 2. Tangshan Fengnan District Power supply Branch of State Grid Jibei Electric Power Co. Ltd Tangshan 063300 China; 3. College of Electrical and Electronic Engineering Wenzhou University Wenzhou 325035 China |
|
|
Abstract The pantograph slide plate and catenary wire providing traction power for electric locomotives are typical sliding electric contact friction pairs, which have multi-field coupling effects of electric, magnetic, thermal, and force in work. The complex multi-field coupling effect will affect the current-carrying quality and friction and wear characteristics of the pantograph-catenary system. The research on the coupling effect of multiple physical fields in pantograph-catenary contact of the electrified railway is of great significance to reduce the operation and maintenance cost of the pantograph-catenary system and improve the service life of pantograph slide plate and catenary wire. This paper uses the classification and induction method to summarize the research progress of the pantograph-catenary system under the multi-field coupling effect in recent years. The research contents include four aspects: electric, magnetic, thermal, and force. The influence laws of contact resistance, arc, contact temperature, electromagnetic force, and pressure load on current-carrying friction and wear performance of pantograph-catenary system were summarized. Suggestions for further research and improvement were put forward. On this basis, the evaluation of electrical contact performance according to the pantograph-catenary contact resistance, arcing rate, and contact temperature was discussed. The following conclusions can be drawn from the analysis: (1) The observation of contact resistance parameters and mathematical model research must be deeply explored, especially the influence of extreme climatic conditions such as cold, low air pressure, and significant temperature differences on the contact surface. (2) The research on arc erosion needs to be further improved and strengthened. The multi-field coupled arc erosion numerical model is established, and the multiscale, parametric, and quantitative research on the pantograph-catenary arc is carried out using numerical optimization. (3) Attention should be paid to the influence of magnetic field on the performance of pantograph-catenary sliding electrical contact, and the discussion on the regulation of external magnetic field on the performance of pantograph-catenary electrical contact should be carried out. (4) The research on life prediction and failure of pantograph-catenary sliding electrical contact under multi-field coupling should be strengthened, and the current-carrying wear mechanism and failure should be deeply explored. The mathematical model of life prediction and failure of pantograph-catenary electrical contact must reasonably predict and evaluate the electrical contact behavior. The research results can provide a practical reference for future pantograph-catenary sliding electrical contact development. Substantial progress has been made in the research of pantograph-catenary sliding electrical contact. However, some problems still need to be deepened and improved continuously. In the future, new technologies represented by artificial intelligence, big data, and cloud computing will promote the integration and development of various disciplines and continuously broaden the innovation space to study the multi-field coupling effect of pantograph-catenary sliding electrical contact.
|
Received: 07 April 2022
|
|
|
|
|
[1] 郭凤仪, 陈忠华. 电接触理论及其应用技术[M]. 北京: 中国电力出版社, 2008. [2] 郭凤仪, 马同立, 陈忠华, 等. 不同载流条件下滑动电接触特性[J]. 电工技术学报, 2009, 24(12): 18-23. Guo Fengyi, Ma Tongli, Chen Zhonghua, et al.Characteristics of the sliding electric contact under different currents[J]. Transactions of China Electro- technical Society, 2009, 24(12): 18-23. [3] 吴积钦. 弓网系统电弧的产生及其影响[J]. 电气化铁道, 2008, 19(2): 27-29. Wu Jiqin.Occurrence of arc in pantograph and overhead contact system and its interference[J]. Electric Railway, 2008, 19(2): 27-29. [4] 陈忠华, 唐俊, 时光, 等. 弓网强电流滑动电接触摩擦振动分析与建模[J]. 电工技术学报, 2020, 35(18): 3869-3877. Chen Zhonghua, Tang Jun, Shi Guang, et al.Analysis and modeling of high current sliding electrical contact friction dynamics in pantograph-catenary system[J]. Transactions of China Electrotechnical Society, 2020, 35(18): 3869-3877. [5] 高国强, 吴广宁, 魏文赋. 轨道交通弓网系统电接触: 理论与应用[M]. 成都: 西南交通大学出版社, 2018. [6] Holm R.Electric contacts handbook[M]. 3rd ed. Berlin: Springer, 1958. [7] 程礼椿. 电接触理论及应用[M]. 北京: 机械工业出版社, 1988. [8] Jackson R L, Kogut L.Electrical contact resistance theory for anisotropic conductive films considering electron tunneling and particle flattening[J]. IEEE Transactions on Components and Packaging Tech- nologies, 2007, 30(1): 59-66. [9] Boyer L.Contact resistance calculations: generali- zations of Greenwood’s formula including interface films[J]. IEEE Transactions on Components and Packaging Technologies, 2001, 24(1): 50-58. [10] Williamson J B P. The microworld of the contact spot[C]//Proceedings of the 27th Holm Conference on Electrical Contacts, Chicago, USA, 1981, 27: 1-10. [11] Malucci R D.Multispot model of contacts based on surface features[C]//Thirty-Sixth IEEE Conference on Electrical Contacts, and the Fifteenth International Conference on Electrical Contacts, Montreal, QC, Canada, 2002: 625-634. [12] Jackson R L, Malucci R D, Angadi S, et al.A simplified model of multiscale electrical contact resistance and comparison to existing closed form models[C]//2009 Proceedings of the 55th IEEE Holm Conference on Electrical Contacts, Vancouver, BC, Canada, 2009: 28-35. [13] Michopoulos J G, Young M, Iliopoulos A.A multi- physics theory for the static contact of deformable conductors with fractal rough surfaces[J]. IEEE Transactions on Plasma Science, 2015, 43(5): 1597-1610. [14] 吴广宁, 周悦, 雷栋, 等. 弓网电接触研究进展[J]. 高电压技术, 2016, 42(11): 3495-3506. Wu Guangning, Zhou Yue, Lei Dong, et al.Research advances in electric contact between pantograph and catenary[J]. High Voltage Engineering, 2016, 42(11): 3495-3506. [15] 陈忠华, 石英龙, 时光, 等. 受电弓滑板与接触网导线接触电阻计算模型[J]. 电工技术学报, 2013, 28(5): 188-195. Chen Zhonghua, Shi Yinglong, Shi Guang, et al.Calculation model of the contact resistance between pantograph slide and contact wire[J]. Transactions of China Electrotechnical Society, 2013, 28(5): 188-195. [16] 李春茂, 朱宁俊, 吴广宁, 等. 弓网系统动态接触电阻数学模型的研究[J]. 高电压技术, 2015, 41(11): 3554-3560. Li Chunmao, Zhu Ningjun, Wu Guangning, et al.Investigation on the mathematical model of dynamic contact resistance of pantograph-catenary system[J]. High Voltage Engineering, 2015, 41(11): 3554-3560. [17] 白金花, 火文辉, 李忠学. 基于弓网电接触界面电阻模型的受流质量研究[J]. 兰州交通大学学报, 2014, 33(3): 11-15. Bai Jinhua, Huo Wenhui, Li Zhongxue.Research on the quality of current-collecting based on the electrical contact interface resistance model of pantograph-catenary[J]. Journal of Lanzhou Jiaotong University, 2014, 33(3): 11-15. [18] Wang Zhiyong, Zhou Qi, Guo Fengyi, et al.Mathe- matical model of contact resistance in pantograph- catenary system considering rough surface characteri- stics[J]. IEEE Transactions on Transportation Elec- trification, 2022, 8(1): 455-465. [19] 赵施林. 兰新高速铁路弓网系统动态接触电阻模型研究[J]. 电气化铁道, 2017, 28(5): 46-52. Zhao Shilin.Researches on dynamic contact resi- stance modeling for pantograph-catenary system of Lanzhou-Xinjiang high speed railway[J]. Electric Railway, 2017, 28(5): 46-52. [20] 时光, 陈忠华, 郭凤仪, 等. 波动载荷下弓网接触电阻特性及建模研究[J]. 电工技术学报, 2019, 34(11): 2287-2295. Shi Guang, Chen Zhonghua, Guo Fengyi, et al.Research on characteristic of the contact resistance of pantograph-catenary under load fluctuation condi- tion[J]. Transactions of China Electrotechnical Society, 2019, 34(11): 2287-2295. [21] Ren Wanbin, Du Danyang, Du Yang.Electrical contact resistance of connector response to mecha- nical vibration environment[J]. IEEE Transactions on Components, Packaging and Manufacturing Tech- nology, 2020, 10(2): 212-219. [22] 高宗宝, 吴广宁, 吕玮, 等. 高速电气化铁路中的弓网电弧现象研究综述[J]. 高压电器, 2009, 45(3): 104-108, 127. Gao Zongbao, Wu Guangning, Lu Wei, et al.Research review of arc phenomenon between pantograph and catenary in high-speed electrified railway[J]. High Voltage Apparatus, 2009, 45(3): 104-108, 127. [23] 杨茜, 荣命哲, 吴翊. 低压断路器中空气电弧运动的仿真及实验研究[J]. 中国电机工程学报, 2006, 26(15): 89-94. Yang Qian, Rong Mingzhe, Wu Yi.Simulation and experimental research on air arc motion in low- voltage circuit breaker[J]. Proceedings of the CSEE, 2006, 26(15): 89-94. [24] Yang Zhenghai, Zhang Yongzhen, Zhao Fei, et al.Dynamic variation of arc discharge during current- carrying sliding and its effect on directional erosion[J]. Tribology International, 2016, 94: 71-76. [25] Wei Wenfu, Wu Jie, Gao Guoqiang, et al.Study on pantograph arcing in a laboratory simulation system by high-speed photography[J]. IEEE Transactions on Plasma Science, 2016, 44(10): 2438-2445. [26] 郭凤仪, 周奇, 王智勇, 等. 波动压力载荷下弓网电弧动态特性研究[J]. 电子测量与仪器学报, 2019, 33(11): 178-184. Guo Fengyi, Zhou Qi, Wang Zhiyong, et al.Research on dynamic characteristics of pantograph-catenary arc under fluctuating pressure load[J]. Journal of Elec- tronic Measurement and Instrumentation, 2019, 33(11): 178-184. [27] Yang Zefeng, Xu Pan, Wei Wenfu, et al.Influence of the crosswind on the pantograph arcing dynamics[J]. IEEE Transactions on Plasma Science, 2020, 48(8): 2822-2830. [28] Gao Guoqiang, Hao Jing, Wei Wenfu, et al.Dynamics of pantograph-catenary arc during the pantograph lowering process[J]. IEEE Transactions on Plasma Science, 2016, 44(11): 2715-2723. [29] Wang Ying, Liu Zhigang, Mu Xiuqing, et al.An extended habedank’s equation-based EMTP model of pantograph arcing considering pantograph-catenary interactions and train speeds[J]. IEEE Transactions on Power Delivery, 2016, 31(3): 1186-1194. [30] 朱光亚. 高速列车弓网电弧演化特性及其数值模拟[D]. 成都: 西南交通大学, 2016. [31] Zhang Yanyan, Zhang Yongzhen, Song Chenfei.Arc discharges of a pure carbon strip affected by dynamic contact force during current-carrying sliding[J]. Materials, 2018, 11(5): 796. [32] 荣命哲. 电接触理论[M]. 北京: 机械工业出版社, 2004. [33] Bo Kai, Zhou Xue, Zhai Guofu, et al. Simulation of metal droplet sputtering and molten pool on copper contact under electric arc[J]. IEICE Transactions on Electronics, 2018, E101.C(9): 691-698. [34] Kharin S N.Mathematical models of heat and mass transfer in electrical contacts[C]//2015 IEEE 61st Holm Conference on Electrical Contacts (Holm), San Diego, CA, USA, 2015: 1-21. [35] 韩伟锋, 高国强, 刘贤汭, 等. 弓网电弧磁流体动力学模型[J]. 铁道学报, 2015, 37(5): 21-26. Han Weifeng, Gao Guoqiang, Liu Xianrui, et al.MHD model of pantograph-catenary arc[J]. Journal of the China Railway Society, 2015, 37(5): 21-26. [36] 吴积钦, 钱清泉. 弓网系统电弧侵蚀接触线时的热分析[J]. 铁道学报, 2008, 30(3): 31-34. Wu Jiqin, Qian Qingquan.Thermal analysis of arc erosion of contact wire of the pantograph & catenary system[J]. Journal of the China Railway Society, 2008, 30(3): 31-34. [37] Yang Hongjuan, Chen Guangxiong, Gao Guoqiang, et al. Experimental research on the friction and wear properties of a contact strip of a pantograph-catenary system at the sliding speed of 350km/h with electric current[J]. Wear, 2015, 332/333: 949-955. [38] Wu Guangning, Zhou Yue, Gao Guoqiang, et al.Arc erosion characteristics of Cu-impregnated carbon materials used for current collection in high-speed railways[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018, 8(6): 1014-1023. [39] 周昱涵, 杨泽锋, 鲁超, 等. 弓网系统离线电弧在低气压环境下运动特性研究[J]. 中国电机工程学报, 2021, 41(15): 5412-5421. Zhou Yuhan, Yang Zefeng, Lu Chao, et al.Research on motion characteristics of offline arc in pantograph catenary system under low air pressure environ- ment[J]. Proceedings of the CSEE, 2021, 41(15): 5412-5421. [40] 籍欣欣, 王智勇, 方志朋. 降雨环境下弓网电弧动态特性研究[J]. 电子测量与仪器学报, 2019, 33(1): 47-53. Ji Xinxin, Wang Zhiyong, Fang Zhipeng.Study on dynamic characteristics of pantograph-catenary arc in rainfall environment[J]. Journal of Electronic Mea- surement and Instrumentation, 2019, 33(1): 47-53. [41] Zhou Zijue, Feng Yi, Zhao Hao, et al.Effects of different atmospheres on the arc erosion behaviors of Ti3SiC2 cathodes[J]. Science China Technological Sciences, 2021, 64(3): 620-628. [42] 宋冬冬, 程林, 林志法, 等. 电弧热等离子体建模、仿真及应用综述[J]. 高电压技术, 2018, 44(3): 932-943. Song Dongdong, Cheng Lin, Lin Zhifa, et al.Review of arc thermal plasma modeling, simulation and application[J]. High Voltage Engineering, 2018, 44(3): 932-943. [43] Chen Song, Sha Fei.Three types of electromagnetic noise between pantograph and catenary[C]//2009 3rd IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, Beijing, China, 2009: 40-43. [44] Mariscotti A, Marrese A, Pasquino N, et al.Time and frequency characterization of radiated disturbance in telecommunication bands due to pantograph arcing[J]. Measurement, 2013, 46(10): 4342-4352. [45] 张静, 宋宝林, 谢松霖, 等. 基于状态估计的高速受电弓鲁棒预测控制[J]. 电工技术学报, 2021, 36(5): 1075-1083. Zhang Jing, Song Baolin, Xie Songlin, et al.Robust predictive control of high-speed pantograph based on state estimation[J]. Transactions of China Electro- technical Society, 2021, 36(5): 1075-1083. [46] 郭凤仪, 王喜利, 王智勇, 等. 弓网离线接触电流总谐波畸变率的实验研究[J]. 电工技术学报, 2015, 30(12): 261-266. Guo Fengyi, Wang Xili, Wang Zhiyong, et al.Experimental research on total harmonic distortion of contact current caused by pantograph-catenary off- line[J]. Transactions of China Electrotechnical Society, 2015, 30(12): 261-266. [47] Guo Fengyi, Feng Xiaoli, Wang Zhiyong, et al.Research on time domain characteristics and mathe- matical model of electromagnetic radiation noise produced by single arc[J]. IEEE Transactions on Components, Packaging and Manufacturing Tech- nology, 2017, 7(12): 2008-2017. [48] Guo Fengyi, Wang Zhiyong, Zheng Zhiqiang, et al.Electromagnetic noise of pantograph arc under low current conditions[J]. International Journal of Applied Electromagnetics and Mechanics, 2017, 53(3): 397-408. [49] 王英, 刘志刚, 黄可, 等. 计及机械和电气特性的弓网表面热流分析和计算[J]. 铁道学报, 2014, 36(7): 36-43. Wang Ying, Liu Zhigang, Huang Ke, et al.Pantograph- catenary surface heat flow analysis and calculations based on mechanical and electrical characteristics[J]. Journal of the China Railway Society, 2014, 36(7): 36-43. [50] Shen Fei, Zhou Kun.Investigation on thermal response in fretting sliding with the consideration of plastic dissipation, surface roughness and wear[J]. International Journal of Mechanical Sciences, 2018, 148: 94-102. [51] Weißenfels C, Wriggers P.Numerical modeling of electrical contacts[J]. Computational Mechanics, 2010, 46(2): 301-314. [52] 谢博华, 鞠鹏飞, 吉利, 等. 电接触材料摩擦学研究进展[J]. 摩擦学学报, 2019, 39(5): 656-668. Xie Bohua, Ju Pengfei, Ji Li, et al.Research progress on tribology of electrical contact materials[J]. Tribology, 2019, 39(5): 656-668. [53] Nituca C.Thermal analysis of electrical contacts from pantograph-catenary system for power supply of electric vehicles[J]. Electric Power Systems Research, 2013, 96: 211-217. [54] Plesca A.Thermal analysis of sliding electrical contacts with mechanical friction in steady state conditions[J]. International Journal of Thermal Sciences, 2014, 84: 125-133. [55] 火文辉, 李忠学. 弓网接触界面热效应与磨损量的数值模拟[J]. 机械研究与应用, 2015, 28(3): 98-100, 104. Huo Wenhui, Li Zhongxue.Numerical simulation of thermal effect and wear loss on pantograph-catenary contact interface[J]. Mechanical Research & Appli- cation, 2015, 28(3): 98-100, 104. [56] 王英, 刘志刚, 母秀清, 等. 受电弓双滑板下的弓网电接触稳态热流分析与验证[J]. 铁道学报, 2015, 37(5): 27-33. Wang Ying, Liu Zhigang, Mu Xiuqing, et al.Thermal steady-state analysis and validation with double slide electric contacts in pantograph-catenary system[J]. Journal of the China Railway Society, 2015, 37(5): 27-33. [57] 杨帅, 王晓红, 曹保江, 等. 弓网电弧温度场研究综述[J]. 高压电器, 2015, 51(4): 173-177. Yang Shuai, Wang Xiaohong, Cao Baojiang, et al.Research review of arc temperature field between pantograph and catenary[J]. High Voltage Apparatus, 2015, 51(4): 173-177. [58] 郭凤仪, 高洪鑫, 刘帅, 等. 载流滑动摩擦副温度场瞬态特性仿真研究[J]. 系统仿真学报, 2018, 30(5): 1715-1723. Guo Fengyi, Gao Hongxin, Liu Shuai, et al.Simu- lation of transient temperature field of current- carrying sliding friction pair[J]. Journal of System Simulation, 2018, 30(5): 1715-1723. [59] 张玉燕, 李海龙, 王振春, 等. 大载流高速滑动电接触表面瞬态温度分析[J]. 中国科学: 技术科学, 2015, 45(8): 834-842. Zhang Yuyan, Li Hailong, Wang Zhenchun, et al.Analysis of surface transient temperature on large current carrying high-speed sliding electrical contact[J]. Scientia Sinica (Technologica), 2015, 45(8): 834-842. [60] Guo Fengyi, Gu Xin, Li Li, et al.Effect of surface microparameters on contact temperature of sliding electrical contact[J]. IEEE Transactions on Industrial Informatics, 2022, 18(9): 5972-5981. [61] 董霖, 李传喜, 陈光雄, 等. 弓网载流摩擦耦合温度场的仿真研究[J]. 中国铁道科学, 2014, 35(3): 102-106. Dong Lin, Li Chuanxi, Chen Guangxiong, et al.Simulation study on coupling temperature field under pantograph-catenary friction with electric current[J]. China Railway Science, 2014, 35(3): 102-106. [62] 王玉婷. 淋雨条件下弓网摩擦副热电特性实验与仿真研究[D]. 阜新: 辽宁工程技术大学, 2018. [63] Guo Fengyi, Gu Xin, Wang Zhiyong, et al.Simulation on current density distribution of current-carrying friction pair used in pantograph-catenary system[J]. IEEE Access, 2020, 8: 25770-25776. [64] Yang Hongjuan, Wang Kai, Liu Yanhua, et al. The formation of the delamination wear of the pure carbon strip and its influence on the friction and wear properties of the pantograph and catenary system[J]. Wear, 2020, 454/455: 203343. [65] Shen Fei, Ke Liaoliang.Numerical study of coupled electrical-thermal-mechanical-wear behavior in elec- trical contacts[J]. Metals, 2021, 11(6): 955. [66] 肖嵩, 叶智宗, 童梦园, 等. 高速列车滚动受电弓弓头载流温升特性[J]. 高电压技术, 2022, 48(5): 1798-1807. Xiao Song, Ye Zhizong, Tong Mengyuan, et al.Thermal characteristics of current-carrying rotatable pantograph for high-speed trains[J]. High Voltage Engineering, 2022, 48(5): 1798-1807. [67] Wu Ruixuan, Song Chenfei, Wu Haihong, et al. Effect of relative humidity on the current-carrying tribo- logical properties of Cu-C sliding contact pairs[J]. Wear, 2022, 492/493: 204219. [68] Ding Tao, Chen Guangxiong, Wang Xin, et al.Friction and wear behavior of pure carbon strip sliding against copper contact wire under AC passage at high speeds[J]. Tribology International, 2011, 44(4): 437-444. [69] 黄仕银. 电流密度对铜基自润滑材料电摩擦性能的影响[J]. 兵器材料科学与工程, 2020, 43(2): 77-80. Huang Shiyin.Influence of current density on elec- trical friction property of Cu-based self-lubricating materials[J]. Ordnance Material Science and Engin- eering, 2020, 43(2): 77-80. [70] Zhou Yuankai, Du Mengdi, Zuo Xue.Influence of electric current on the temperature rise and wear mechanism of copper-graphite current-carrying friction pair[J]. Journal of Tribology, 2022, 144(10): 101701. [71] 郭凤仪, 陈明阳, 陈忠华, 等. 弓网滑动电接触摩擦力特性与建模研究[J]. 电工技术学报, 2018, 33(13): 2982-2990. Guo Fengyi, Chen Mingyang, Chen Zhonghua, et al.Research on friction characteristics and modeling of pantograph-catenary sliding electrical contact[J]. Transactions of China Electrotechnical Society, 2018, 33(13): 2982-2990. [72] Lang Haojie, Xu Yimeng, Zhu Pengzhe, et al.Superior lubrication and electrical stability of graphene as highly effective solid lubricant at sliding electrical contact interface[J]. Carbon, 2021, 183: 53-61. [73] 赵云云, 吴广宁, 高国强, 等. 弓网系统电磁作用力的研究[J]. 铁道学报, 2014, 36(10): 28-32. Zhao Yunyun, Wu Guangning, Gao Guoqiang, et al.Study on electromagnetic force of pantograph- catenary system[J]. Journal of the China Railway Society, 2014, 36(10): 28-32. [74] Niu Dapeng, Zhu Feng, Xu Changwei, et al.Measurement and analysis of low frequency magnetic field in multiple unit train[C]//2013 5th IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, Chengdu, China, 2013: 568-571. [75] He Zhijiang, Ni Ziran, Wang Hong, et al.Effect of magnetic field on the current-carrying friction and wear performance of C/Cu contact pairs[C]//2021 International Conference on Electrical Materials and Power Equipment (ICEMPE), Chongqing, China, 2021: 1-4. [76] Lee J H, Park T W, Oh H K, et al.Analysis of dynamic interaction between catenary and pantograph with experimental verification and performance evaluation in new high-speed line[J]. Vehicle System Dynamics, 2015, 53(8): 1117-1134. [77] 何志江, 杨泽锋, 王虹, 等. 弓网电接触系统服役性能的纵向磁场优化方法研究[J]. 电工技术学报, 2023, 38(15): 1228-1236. He Zhijiang, Yang Zefeng, Wang Hong, et al.Axial magnetic field optimization method for service performance in electric contact system between pantograph and catenary[J]. Transactions of China Electrotechnical Society, 2023, 38(15): 1228-1236. [78] Liu Xianrui, Yang Zefeng, Xiao Song, et al.Multi- physics analysis and optimisation of high-speed train pantograph-catenary systems allowing for velocity skin effect[J]. High Voltage, 2020, 5(6): 654-661. [79] 李权, 佘鹏鹏, 母婷佑, 等. 磁驱动弓网电弧及其侵蚀特性研究[J]. 真空科学与技术学报, 2020, 40(11): 1064-1069. Li Quan, She Pengpeng, Mu Tingyou, et al.Impact of magnetic field on arc-ablation of pantograph catenary surface: an experimental simulation study[J]. Chinese Journal of Vacuum Science and Technology, 2020, 40(11): 1064-1069. [80] 郭凤仪, 娄晓妹, 李本君, 等. 滑动电接触磨损量最小的最佳载荷实验[J]. 辽宁工程技术大学学报(自然科学版), 2012, 31(1): 81-84. Guo Fengyi, Lou Xiaomei, Li Benjun, et al.Optimum normal load when minimum wear loss of electrical sliding contact[J]. Journal of Liaoning Technical University (Natural Science), 2012, 31(1): 81-84. [81] 章赛丹, 陈光雄, 杨红娟. 接触压力对碳滑板/铜接触线载流摩擦磨损性能的影响[J]. 润滑与密封, 2012, 37(9): 41-45. Zhang Saidan, Chen Guangxiong, Yang Hongjuan.Effect of contact pressure on friction and wear behavior of carbon strip/copper contact wire under AC passage[J]. Lubrication Engineering, 2012, 37(9): 41-45. [82] 陈忠华, 唐博, 时光, 等. 弓网多目标滑动电接触下最优压力载荷[J]. 电工技术学报, 2015, 30(17): 154-160. Chen Zhonghua, Tang Bo, Shi Guang, et al.Optimal pressure load under multi-objective sliding electric contact in the pantograph-catenary system[J]. Transactions of China Electrotechnical Society, 2015, 30(17): 154-160. [83] 陈忠华, 吴迪, 回立川, 等. 波动载荷下弓网滑动电接触失效研究[J]. 电工技术学报, 2019, 34(21): 4492-4500. Chen Zhonghua, Wu Di, Hui Lichuan, et al.Research on failure of pantograph-catenary sliding electrical contact under fluctuation load[J]. Transactions of China Electrotechnical Society, 2019, 34(21): 4492-4500. [84] 陈忠华, 王铁军, 回立川, 等. 弓网系统滑动电接触最优压力载荷的确定[J]. 电工技术学报, 2013, 28(6): 86-92. Chen Zhonghua, Wang Tiejun, Hui Lichuan, et al.Determination of the optimal contact load in pantograph-catenary system[J]. Transactions of China Electrotechnical Society, 2013, 28(6): 86-92. [85] 时光, 陈忠华, 郭凤仪. 强电流滑动电接触下最佳法向载荷[J]. 电工技术学报, 2014, 29(1): 23-30. Shi Guang, Chen Zhonghua, Guo Fengyi.Optimal normal load of sliding electrical contacts under high current[J]. Transactions of China Electrotechnical Society, 2014, 29(1): 23-30. [86] Chen Zhonghua, Sun Guojun, Shi Guang, et al.Study on characterization and model of friction of sliding electrical contact of pantograph-catenary system[C]// IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 2017: 2312-2317. [87] 陈忠华, 平宇, 陈明阳, 等. 波动接触力下弓网载流摩擦力建模研究[J]. 电工技术学报, 2019, 34(7): 1434-1440. Chen Zhonghua, Ping Yu, Chen Mingyang, et al.Research on current-carrying friction modeling of pantograph-catenary under fluctuation contact pressure[J]. Transactions of China Electrotechnical Society, 2019, 34(7): 1434-1440. [88] 陈忠华, 党伟, 时光, 等. 波动载荷下滑动电接触摩擦力建模[J]. 电工技术学报, 2019, 34(24): 5126-5134. Chen Zhonghua, Dang Wei, Shi Guang, et al.Modeling of sliding electrical contact friction under wave loading[J]. Transactions of China Electro- technical Society, 2019, 34(24): 5126-5134. [89] 姚芳, 李志刚, 李玲玲, 等. 继电器触点接触电阻的时间序列短期预测[J]. 中国电机工程学报, 2005, 25(2): 61-65. Yao Fang, Li Zhigang, Li Lingling, et al.The time series short-term prediction on the contact resistance of contacts of relay[J]. Proceedings of the CSEE, 2005, 25(2): 61-65. [90] (加)Milenko Braunovic, (白俄)Valery V. Konchits, (俄)Nikolai K Myshkin. 电接触理论、应用与技术[M]. 许良军, 芦娜, 林雪燕, 等译. 北京: 机械工业出版社, 2010. [91] 郭凤仪, 任志玲, 马同立, 等. 滑动电接触磨损过程变化的实验研究[J]. 电工技术学报, 2010, 25(10): 24-29. Guo Fengyi, Ren Zhiling, Ma Tongli, et al.Experi- mental research on wear process variability of the sliding electric contact[J]. Transactions of China Electrotechnical Society, 2010, 25(10): 24-29. [92] 中华人民共和国铁道部. TB/T 3271-2011 轨道交通受流系统受电弓与接触网相互作用准则[S]. 北京: 中国铁道出版社, 2011. [93] 国家铁路局. TB 10009-2016 铁路电力牵引供电设计规范[S]. 北京: 中国铁道出版社, 2016. [94] 中国铁路总公司. TG/GD 124-2015 高速铁路接触网运行维修规则[S]. 北京: 中国铁道出版社, 2015. [95] 王婧, 张文轩. 高速铁路弓网燃弧率评价标准探讨[J]. 铁道技术监督, 2017, 45(1): 7-9, 16. Wang Jing, Zhang Wenxuan.Discussion on evalu- ation criteria for pantograph-catenary arcing per- centage of high-speed railway[J]. Railway Quality Control, 2017, 45(1): 7-9, 16. [96] 谢宝志, 何志江, 邓磊, 等. 考虑温度作用的浸金属碳滑板磨损量预测方法研究[J]. 铁道标准设计, 2022, 66(10): 179-184. Xie Baozhi, He Zhijiang, Deng Lei, et al.Wear prediction of metal-impregnated carbon strip con- sidering temperature effect[J]. Railway Standard Design, 2022, 66(10): 179-184. [97] 周宁, 蔚超, 谭梦颖, 等. 弓网系统动态及受流性能测试技术研究及应用[J]. 铁道学报, 2020, 42(3): 47-54. Zhou Ning, Wei Chao, Tan Mengying, et al.Investigation on and application of measurement technology of dynamic performance and current collection quality of pantograph-catenary system[J]. Journal of the China Railway Society, 2020, 42(3): 47-54. |
|
|
|