|
|
Analysis of the Effect of Blending Different Molecular Weight Polyetheramines on the Thermal and Electrical Properties of Epoxy Composite Foam Insulation Materials |
Liu Hechen1, Dong Peng1, Zhou Songsong2, Liu Yunpeng1, Wei Liwei1, Li Le1 |
1. Hebei Key Laboratory of Green and Efficient New Electrical Materials and Equipment North China Electric Power University Baoding 071003 China; 2. China Electric Power Research Institute Beijing 100192 China |
|
|
Abstract Epoxy-based composite foam (syntactic foam) uses hollow microspheres of low-density material as the lightweight phase and epoxy resin as the matrix phase. It has high porosity, low density, few internal defects, and good insulating properties, with good application prospects as a core insulating material. However, due to the large size of the insulating core, SF materials are prone to thermal concentration in the casting and curing process. It causes problems such as core burning and cracking within the material, greatly impacting the performance of the core after curing. By modifying the resin matrix in the SF material, the starting temperature of the epoxy resin-based cross-linking reaction and the reactivity of the curing agent are reduced. Thus, the curing speed of the SF material curing reaction and the amount of heat released can be reduced, alleviating the core burning phenomenon. The characteristics of low viscosity, low reactivity, and high elongation of polyetheramines are combined with those of low density and high viscosity of SF systems. By blending polyetheramine curing agents of different molecular weights to obtain epoxy-based SF systems with suitable curing rates and heat release, the electrical and thermomechanical properties of the materials were also comprehensively evaluated to obtain suitable matrix formulations for insulation core applications. The internal temperature of the blended system during curing (40 ℃) is measured using thermocouples to clarify the actual temperature variation during curing. In addition, good electrical and thermal properties are required as core insulating material. It also needs to have a low water absorption rate. Breakdown strength, dielectric loss angle, leakage current, and thermal weight loss were measured for different SF materials, and the change in water absorption was tested for SF materials over 96 h. The interface between the microspheres and the resin matrix affects the performance of the SF materials. The degree of interfacial bonding between the microspheres and the resin matrix was observed by scanning electron microscopy (SEM). The results show that SF material systems with lower curing reaction rates can be obtained by blending polyetheramines of different molecular weights. The internal peak curing temperature decreases from 185 ℃ to 113.5 ℃. With the gradual increase of the high molecular weight curing agent (D-2000), the electrical and thermal properties show different decrease degrees (breakdown voltage decreases from 28.53 kV/mm to 22.74 kV/mm; leakage current increases by 11.38 μA to 41.24 μA; and the 5 % thermal weight loss temperature decreases by up to 17 ℃). In addition, SEM tests determine that the different curing agent systems have little effect on the interfacial bond strength of the microspheres and the resin matrix. The influence of the interface on the change in material properties is excluded. As the proportion of high molecular weight D-2000 curing agent increases, the activation energy of the curing reaction gradually increases, and the reaction rate decreases. It can significantly reduce the core temperature during curing and reduce the heat concentration phenomenon during curing. With the addition of the D-2000 curing agent, SF material thermal decomposition temperature, electrical properties, and water absorption slightly decrease but still meet the practical application.
|
Received: 01 April 2022
|
|
|
|
|
[1] Argin M, Karady G G.Characterization of polyure- thane foam dielectric strength[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2008, 15(2): 350-356. [2] 刘云鹏, 李乐, 张铭嘉, 等. 复合绝缘横担界面特性检测研究现状[J]. 电工技术学报, 2020, 35(2): 408-424. Liu Yunpeng, Li Le, Zhang Mingjia, et al.Research status of interface detection for composite cross- arm[J]. Transactions of China Electrotechnical Society, 2020, 35(2): 408-424. [3] Liu Yunpeng.Hollow polymeric microsphere-filled silicone-modified epoxy as an internally insulated material for composite cross-arm applications[J]. Composites Science and Technology, 2020, 200: 108418. [4] Strauchs A, Mashkin A, Schnettler A.Effects of SiO2 nanofiller on the properties of epoxy resin based syntactic foam[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19(2): 400-407. [5] Carvalho G B, Canevarolo Jr S V, Sousa J A. Influence of interfacial interactions on the mechanical behavior of hybrid composites of polypropylene/short glass fibers/hollow glass beads[J]. Polymer Testing, 2020, 85: 106418. [6] Hu Yan, Mei Ruiguo, An Zhengguo.Silicon rubber/ hollow glass microsphere composites: influence of broken hollow glass microsphere on mechanical and thermal insulation property[J]. Composites Science and Technology, 2013, 79: 64-69. [7] Wang Rui, Hou Feng, Chang Chao.Experimental and computational modeling of thermal conductivity of cementitious syntactic foams filled with hollow glass microspheres[J]. Construction and Building Materials, 2020, 265: 120739. [8] 王闯, 孙青, 贾静, 等. 端羟基液态丁腈橡胶对室温固化环氧树脂热学和电学性能的影响[J]. 中国电机工程学报, 2020, 40(10): 3368-3377. Wang Chuang, Sun Qing, Jia Jing, et al.Thermal and electrical properties of room temperature cured epoxy resin modified by hydroxyl-terminated liquid nitrile butadiene rubber[J]. Proceedings of the CSEE, 2020, 40(10): 3368-3377. [9] Zhang Zhongyuan, Dai Xiaohan, Li Le, et al.Current status of research on the modification of thermal properties of epoxy resin-based syntactic foam insulation materials[J]. Polymers, 2021, 13(18): 3185. [10] Li He, Ai Ding, Ren Lulu, et al.Scalable polymer nanocomposites with record high-temperature capaci- tive performance enabled by rationally designed nano- structured inorganic fillers[J]. Advanced Materials (Deerfield Beach, Fla), 2019, 31(23): e1900875. [11] Wang Zhengdong, Meziani M J, Patel A K, et al.Boron nitride nanosheets from different preparations and correlations with their material properties[J]. Industrial & Engineering Chemistry Research, 2019, 58(40): 18644-18653. [12] Mehra N, Mu Liwen, Ji Tuo, et al.Thermal transport in polymeric mate- rials and across composite interfaces[J]. Applied Materials Today, 2018, 12: 92-130. [13] 刘云鹏, 李乐, 刘贺晨, 等. 微米氮化硼对有机硅改性环氧树脂基轻质绝缘材料热特性及电气性能影响研究[J]. 中国电机工程学报, 2021, 41(12): 4342-4354. Liu Yunpeng, Li Le, Liu Hechen, et al.Effect of micro boron nitride on thermal and electrical pro- sperities of silicone modified epoxy based light- weight insulated materials[J]. Proceedings of the CSEE, 2021, 41(12): 4342-4354. [14] Datsyuk V, Trotsenko S, Reich S.Carbon-nanotube- polymer nanofibers with high thermal conductivity[J]. Carbon, 2013, 52: 605-608. [15] 赵玉顺, 何元菡, 杨克荣, 等. Me-THPA扩链改性环氧树脂对其固化物绝缘特性的影响[J]. 电工技术学报, 2020, 35(增刊1): 311-319. Zhao Yushun, He Yuanhan, Yang Kerong, et al.Insulation performance of Me-THPA chain-extended epoxy resin cured products[J]. Transactions of China Electrotechnical Society, 2020, 35(S1): 311-319. [16] Lü Jiaxun, Hu Dongdong, Liu Tao, et al.Non- isothermal kinetics of epoxy resin curing reaction under compressed CO2[J]. Journal of Thermal Analysis and Calorimetry, 2018, 131(2): 1499-1507. [17] Tezel G B, Sarmah A, Desai S, et al.Kinetics of carbon nanotube-loaded epoxy curing: rheometry, differential scanning calorimetry, and radio frequency heating[J]. Carbon, 2021, 175: 1-10. [18] Lascano D, Lerma-Canto A, Fombuena V, et al.Kinetic analysis of the curing process of biobased epoxy resin from epoxidized linseed oil by dynamic differential scanning calorimetry[J]. Polymers, 2021, 13(8): 1279. [19] 刘育豪, 林荧, 王黎明, 等. 脂环族环氧树脂绝缘子内部固化反应与温度场数值分析[J]. 高电压技术, 2020, 46(6): 1986-1993. Liu Yuhao, Lin Ying, Wang Liming, et al.Internal curing reaction and numerical analysis of temperature field of cycloaliphatic epoxy resin insulators[J]. High Voltage Engineering, 2020, 46(6): 1986-1993. [20] Fatemeh F, Yuan Zhongshun, Anderson M, et al.Sustainable lignin-based epoxy resins cured with aromatic and aliphatic amine curing agents: curing kinetics and thermal properties[J]. Thermochimica Acta, 2015, 618: 48-55. [21] 韦君, 颜春, 祝颖丹, 等. 生物基可降解环氧树脂体系固化反应动力学研究[J]. 热固性树脂, 2021, 36(5): 25-30. Wei Jun, Yan Chun, Zhu Yingdan, et al.Curing kine- tics of bio-based degradable epoxy resin system[J]. Thermosetting Resin, 2021, 36(5): 25-30. [22] 葛岭梅, 薛韩玲, 徐精彩, 等. 对煤分子中活性基团氧化机理的分析[J]. 煤炭转化, 2001, 24(3): 23-28. Ge Lingmei, Xue Hanling, Xu Jingcai, et al.Study on the oxidation mechanism of active groups of coal[J]. Coal Conversion, 2001, 24(3): 23-28. [23] 林浩. 桥梁加固用腰果酚改性胺类低温固化剂分子的空间位阻效应研究[J]. 粘接, 2018, 39(2): 33-36, 48. Lin Hao.Study on steric hindrance of cardanol modified amines as low temperature curing agents for bridge reinforcing[J]. Adhesion, 2018, 39(2): 33-36, 48. [24] 陈明, 靳晓宁, 马骁飞, 等. 基于环糊精本征识别能力的手性色谱介质点击制备及应用[J]. 色谱, 2020, 38(11): 1270-1280. Chen Ming, Jin Xiaoning, Ma Xiaofei, et al.Click preparation and application of chiral stationary phase based on intrinsic recognition ability of cyclo- dextrin[J]. Chinese Journal of Chromatography, 2020, 38(11): 1270-1280. [25] Silva I D S, Barros J J P, Jaques N G, et al. On the curing kinetics of epoxy/PLA compounds[J]. Journal of Materials Research, 2021, 36(14): 2973-2986. [26] 赵继永, 王志鹏, 程世婧, 等. 高性能聚合物泡沫材料的制备性能与应用研究进展[J]. 高分子材料科学与工程, 2020, 36(6): 136-144. Zhao Jiyong, Wang Zhipeng, Cheng Shijing, et al.Preparation, properties and applications of high- performance polymeric foam materials[J]. Polymer Materials Science & Engineering, 2020, 36(6): 136-144. [27] 夏学禹, 顾雪萍, 冯连芳, 等. 三聚氰胺甲醛泡沫增韧改性研究进展[J]. 高分子材料科学与工程, 2019, 35(4): 182-190. Xia Xueyu, Gu Xueping, Feng Lianfang, et al.Advances on toughening modification of melamine foam[J]. Polymer Materials Science & Engineering, 2019, 35(4): 182-190. [28] 肖来辉, 胡芳芳, 王义刚, 等. 桐腈橡胶的合成及其对环氧树脂的增韧改性研究[J]. 热固性树脂, 2019, 34(6): 50-55. Xiao Laihui, Hu Fangfang, Wang Yigang, et al.Study on the synthesis of tung oil-based nitrile rubber and its toughening modification of epoxy resin[J]. Ther- mosetting Resin, 2019, 34(6): 50-55. [29] 杨锐, 戴子林, 朱淮军, 等. 八苯基环四硅氧烷用量对苯基乙烯基硅油性能的影响研究[J]. 化工新型材料, 2018, 46(5): 151-153. Yang Rui, Dai Zilin, Zhu Huaijun, et al.Study on the effect of the content of octaphenylcyclotetrasiloxane on the property of phenyl vinyl silicone[J]. New Chemical Materials, 2018, 46(5): 151-153. [30] 姜卓钰. 碳纤维增强聚酰亚胺树脂基复合材料热氧稳定性及稀土改性研究[D]. 北京: 北京化工大学, 2017. [31] 倪潇茹, 王健, 王靖瑞, 等. 碳纳米管对环氧树脂复合介质电-热裂解特性的微观调控模拟[J]. 电工技术学报, 2018, 33(22): 5159-5167. Ni Xiaoru, Wang Jian, Wang Jingrui, et al.Micro- control simulation of electro-thermal dissociation characteristics of carbon nanotubes/epoxy resin com- posites[J]. Transactions of China Electrotechnical Society, 2018, 33(22): 5159-5167. [32] 谢伟, 杨征, 程显, 等. 环氧树脂材料热氧老化特性研究[J]. 电工技术学报, 2020, 35(20): 4397-4404. Xie Wei, Yang Zheng, Cheng Xian, et al.Study on thermo-oxygen aging characteristics of epoxy resin material[J]. Transactions of China Electrotechnical Society, 2020, 35(20): 4397-4404. [33] Levchik S V, Weil E D.Thermal decomposition, combustion and flame-retardancy of epoxy resins? a review of the recent literature[J]. Polymer Inter- national, 2004, 53(12): 1901-1929. [34] 杜伯学, 张莹, 孔晓晓, 等. 环氧树脂绝缘电树枝劣化研究进展[J]. 电工技术学报, 2022, 37(5): 1128-1135, 1157. Du Boxue, Zhang Ying, Kong Xiaoxiao, et al.Research progress on electrical tree in epoxy resin insulation[J]. Transactions of China Electrotechnical Society, 2022, 37(5): 1128-1135, 1157. [35] Tagliavia G, Porfiri M, Gupta N.Influence of moisture absorption on flexural properties of syntactic foams[J]. Composites Part B: Engineering, 2012, 43(2): 115-123. [36] 刘贺晨, 郭展鹏, 李岩, 等. 衣康酸基环氧树脂和双酚A环氧树脂性能对比研究[J]. 电工技术学报, 2022, 37(9): 2366-2376. Liu Hechen, Guo Zhanpeng, Li Yan, et al.Com- parative study on the performance of itaconic acid based epoxy resin and bisphenol A epoxy resin[J]. Transactions of China Electrotechnical Society, 2022, 37(9): 2366-2376. [37] 高乃奎, 彭宗仁, 谢恒堃. EPDM/Al(OH)3复合材料界面结构参数表征研究[J]. 复合材料学报, 2000, 17(4): 124-126. Gao Naikui, Peng Zongren, Xie Hengkun.Study on the characterization of interfacial structure parameters in EPDM/Al(OH)3 composites[J]. Acta Materiae Compositae Sinica, 2000, 17(4): 124-126. [38] Yung K C.Preparation and properties of hollow glass microsphere-filled epoxy-matrix composites[J]. Com- posites Science and Technology, 2009, 69(2): 260-264. [39] Liu Hechen, Liu Aijing, Liu Yunpeng, et al.Electrical and hydrolysis-resistance properties of silicone- modified resin/microsphere syntactic foam for composite cross-arms insulation application[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28(1): 248-256. [40] Liu Yunpeng.Hollow polymeric microsphere-filled silicone-modified epoxy as an internally insulated material for composite cross-arm applications[J]. Composites Science and Technology, 2020, 200: 108418. [41] Park S J.Preparation and physical properties of hollow glass microspheres-reinforced epoxy matrix resins[J]. Materials Science and Engineering: A, 2005, 402(1/2): 335-340. [42] 孔波, 孟永鹏, 马延昊, 等. 固化剂中脂环胺与聚醚胺比例对环氧薄膜储能性能的影响[J]. 绝缘材料, 2021, 54(5): 27-33. Kong Bo, Meng Yongpeng, Ma Yanhao, et al.Effect of ratio of alicyclic amine to polyether amine in curing agent on energy storage properties of epoxy film[J]. Insulating Materials, 2021, 54(5): 27-33. [43] 林荧, 刘育豪, 武康宁, 等. UV-A辐射对外绝缘用液态硅橡胶和高温硫化硅橡胶的影响及其机理[J]. 中国电机工程学报, 2021, 41(5): 1575-1588. Lin Ying, Liu Yuhao, Wu Kangning, et al.Influence of UV-A radiation on liquid silicone rubber and high temperature vulcanized silicone rubber for outdoor insulation and its mechanism[J]. Proceedings of the CSEE, 2021, 41(5): 1575-1588. [44] 李鹏新, 崔浩喆, 邢照亮, 等. 环氧/POSS复合电介质介电与热学性能[J]. 电工技术学报, 2022, 37(2): 291-298. Li Pengxin, Cui Haozhe, Xing Zhaoliang, et al.Dielectric and thermal properties of epoxy/POSS composites[J]. Transactions of China Electrotechnical Society, 2022, 37(2): 291-298. [45] 迟庆国, 崔爽, 张天栋, 等. 碳化硅晶须/环氧树脂复合介质非线性电导特性研究[J]. 电工技术学报, 2020, 35(20): 4405-4414. Chi Qingguo, Cui Shuang, Zhang Tiandong, et al.Study on nonlinear characteristics on conductivity of silicon carbide whisker/epoxy resin composites[J]. Transactions of China Electrotechnical Society, 2020, 35(20): 4405-4414. |
|
|
|