|
|
Effect of De-Powdering on the Performance of Silicone Rubber Composite Insulator |
Zhang Zhijin, Liang Tian, Xiang Yingzhu, Jiang Xingliang |
State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China |
|
|
Abstract Different degrees of pulverization will occur on the surface of silicone rubber composite insulators operating in harsh environments such as high altitude, strong ultraviolet, salt fog and high humidity, thereby affecting the insulator's performance. In this paper, the powdering phenomenon of the composite insulator umbrella skirt aged for more than 10 years under three different environmental conditions was studied, and the hydrophobicity, roughness, dielectric properties, micromorphology and surface chemistry of the powdered layer before and after removal were tested. The results show that the hydrophobicity, roughness and dielectric properties of the composite insulator shed sample become worse after removing the powdered layer, a large number of micro holes are exposed on the surface of the composite insulator, and the chemical composition of the surface can be restored to the state close to that of the silicone rubber. The improvement of the composite insulator performance by de-powdering treatment is inconsistent. Therefore, whether the powdered composite insulators need to be de-powdered immediately in the actual operation remains to be further studied.
|
Received: 01 August 2020
|
|
|
|
|
[1] 梁曦东, 高岩峰, 王家福, 等. 中国硅橡胶复合绝缘子快速发展历程[J]. 高电压技术, 2016, 42(9): 2888-2896. Liang Xidong, Gao Yanfeng, Wang Jiafu, et al.Rapid development of silicone rubber composite insulator in china[J]. High Voltage Engineering, 2016, 42(9): 2888-2896. [2] 严璋, 朱德恒. 高电压绝缘技术[M]. 北京: 中国电力出版社, 2002. [3] 关志成, 刘瑛岩, 周远翔, 等. 绝缘子及输变电设备外绝缘[M]. 北京: 清华大学出版社, 2006. [4] 梁英, 高婷, 王祥念, 等. 电场和温度协同作用下复合绝缘子用硅橡胶微观结构演化[J]. 电工技术学报, 2020, 35(7): 1575-1583. Liang Ying, Gao Ting, Wang Xiangnian, et al.Microstructure evolution of silicone rubber used for composite insulators under the effects of electric field and temperature[J]. Transactions of China Electro- technical Society, 2020, 35(7): 1575-1583. [5] 张志劲, 张翼, 蒋兴良, 等. 自然环境不同年限复合绝缘子硅橡胶材料老化特性表征方法研究[J]. 电工技术学报, 2020, 35(6): 1368-1376. Zhang Zhijin, Zhang Yi, Jiang Xingliang, et al.Study on aging characterization methods of composite insulators aging in natural environment for different years[J]. Transactions of China Electrotechnical Society, 2020, 35(6): 1368-1376. [6] 肖雄, 王建国, 吴照国, 等. 等离子体作用后硅橡胶憎水性恢复及憎水迁移特性研究[J]. 电工技术学报, 2019, 34(增刊1): 433-439. Xiao Xiong, Wang Jianguo, Wu Zhaoguo, et al.Study on hydrophobicity recovery and hydrophobicity transfer of plasma treated silicone rubber[J]. Transa- ctions of China Electrotechnical Society, 2019, 34(S1): 433-439. [7] 夏云峰, 宋新明, 何建宗, 等. 复合绝缘子用硅橡胶老化状态评估方法[J]. 电工技术学报, 2019, 34(增刊1): 440-448. Xia Yunfeng, Song Xinming, He Jianzong.et al.Evaluation method of aging for silicone rubber of composite insulator[J]. Transactions of China Elec- trotechnical Society, 2019, 34(S1): 440-448. [8] 谢从珍, 李超红, 曾磊磊, 等. 绿藻对交流复合绝缘子伞裙表面形貌及憎水性的影响机理[J]. 电工技术学报, 2019, 34(4): 831-837. Xie Congzhen, Li Chaohong, Zeng Leilei, et al.Effect mechanism of green algae on surface morphology and hydrophobicity of AC composite insulator sheds[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 831-837. [9] 张妮, 汪政, 杨粤, 等. 硝酸对硅橡胶的老化作用机理研究[J]. 电工技术学报, 2021, 36(22): 4820-4828. Zhang Ni, Wang Zheng, Yang Yue, et al.Study on the nitric acid induced aging mechanism in silicone rubber[J]. Transactions of China Electrotechnical Society, 2021, 36(22): 4820-4828. [10] 张血琴, 张玉翠, 郭裕钧, 等. 基于高光谱技术的复合绝缘子表面老化程度评估[J]. 电工技术学报, 2021, 36(2): 388-396. Zhang Xueqin, Zhang Yucui, Guo Yujun, et al.Aging degree evaluation of composite insulator based on hyperspectral technology[J]. Transactions of China Electrotechnical Society, 2021, 36(2): 388-396. [11] 陈杰, 吴世林, 胡丽斌, 等. 退役高压电缆附件绝缘状态及理化性能分析[J]. 电工技术学报, 2021, 36(12): 2650-2658. Chen Jie, Wu Shilin, Hu Libin, et al.Analysis of insulation state and physicochemical property of retired high-voltage cable accessories[J]. Transactions of China Electrotechnical Society, 2021, 36(12): 2650-2658. [12] 李国倡, 王家兴, 魏艳慧, 等. 高压直流电缆附件XLPE/SIR材料特性及界面电荷积聚对电场分布的影响[J]. 电工技术学报, 2021, 36(14): 3081-3089. Li Guochang, Wang Jiaxing, Wei Yanhui, et al.Effect of material properties of XLPE/SIR and interface charge accumulation on electric field distribution of HVDC cable accessory[J]. Transactions of China Electrotechnical Society, 2021, 36(14): 3081-3089. [13] 李进, 赵仁勇, 杜伯学, 等. 电工环氧绝缘件缺陷无损检测方法研究进展[J]. 电工技术学报, 2021, 36(21): 4598-4607. Li Jin, Zhao Renyong, Du Boxue, et al.Research progress of nondestructive detection methods for defects of electrical epoxy insulators[J]. Transactions of China Electrotechnical Society, 2021, 36(21): 4598-4607. [14] Chughtai A R, Smith D M, Kumosa L S, et al.FTIR analysis of non-ceramic composite insulators[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2004, 11(4): 585-596. [15] 卢明, 张中浩, 李黎, 等. 复合绝缘子酥朽发热老化的原因分析[J]. 电网技术, 2018, 42(4): 1335-1341. Lu Ming, Zhang Zhonghao, Li Li, et al.Reason analysis of decay-like aging for composite insu- lator[J]. Power System Technology, 2018, 42(4): 1335-1341. [16] 戴罕奇, 梅红伟, 王黎明, 等. 复合绝缘子弱憎水性状态描述方法Ⅰ——静态接触角法的适用性[J]. 电工技术学报, 2013, 28(8): 34-47. Dai Hanqi, Mei Hongwei, Wang Liming, et al.Description method Ⅰ for unobvious hydrophobic state of composite insulators—usability of contact angle method[J]. Transactions of China Electro- technical Society, 2013, 28(8): 34-47. [17] Xiong Yu, Rowland S, Robertson J, et al.Surface analysis of asymmetrically aged 400kV silicone rubber composite insulators[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2008, 15(3): 763-770. [18] Ahmadi-Joneidi I, Shayegani-Akmal A A, Mohseni H. Lifetime prediction of 20kV field-aged silicone rubber insulators via condition assessment[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2018, 24(6): 3612-3621. [19] Rowland S, Robertson J, Xiong Yu, et al.Electrical and material characterization of field-aged 400kV silicone rubber composite insulators[J]. IEEE Transa- ctions on Dielectrics and Electrical Insulation, 2010, 17(2): 375-383. [20] 邓桃, 杨滴, 陶文彪, 等. 复合绝缘子粉化伞裙的微观结构与憎水性的关联研究[J]. 电网技术, 2016, 40(1): 328-334. Deng Tao, Yang Di, Tao Wenbiao, et al.The rela- tionship between microstructure and hydrophobicity of pulverized composite insulator sheds[J]. Power System Technology, 2016, 40(1): 328-334. [21] 陈灿, 王希林, 贾志东, 等. 基于高分子结晶分析方法的液体硅橡胶老化机制研究[J]. 中国电机工程学报, 2014, 34(9): 1462-1470. Chen Can, Wang Xilin, Jia Zhidong, et al.A polymer crystallization based study on the degradation mechanism of liquid silicone rubber[J]. Proceedings of the CSEE, 2014, 34(9): 1462-1470. [22] 袁田, 张锐, 吴光亚, 等. 运行复合绝缘子表面粗糙度对憎水性特性的影响[J]. 高电压技术, 2012, 38(11): 2993-2999. Yuan Tian, Zhang Rui, Wu Guangya, et al.Effect of surface roughness of operating composite insulators on the hydrophobicity characteristic[J]. High Voltage Engineering, 2012, 38(11): 2993-2999. [23] IEC 60815-1 TS, Ed. 1.0: 污染条件用高压绝缘子的选择和尺寸选定第1部分: 定义、信息和一般原理[S]. 日内瓦: 国际电工委员会 (IEC), 1986. [24] Mavrikakis N C, Mikropoulos P N, Siderakis K.Evaluation of field-ageing effects on insulating materials of composite suspension insulators[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(1): 490-498. |
|
|
|