|
|
Characteristic Analysis of Single-Pole Breakage Fault in Complex Ring Flexible DC Distribution Systems |
Dai Zhihui, Chen Siqi, Li Yiran, Jiao Yanjun |
State Key Laboratory of Alternate Electrical Power System with Renewable Energy Resources North China Electric Power University Baoding 071003 China |
|
|
Abstract The fault characteristic analysis is the basis of designing protection schemes. Some positive and negative voltages/currents present long-term unbalance after single-pole breakage faults in the ring flexible DC distribution network, which endangers the safe and stable operation of the system, whereas little research on it has been implemented. Therefore, characteristics of single-pole breakage fault in ring flexible DC distribution network are studied. First, a typical complex ring flexible DC distribution network model was established, and the coordinated control strategy of key equipment and each port was defined. Second, by establishing the equivalent model of the system before and after the fault, the voltage and current characteristics of the single-pole breakage fault on the DC line, the link line between the sending-end converter and the DC bus, and the link line between the receiving-end converter and the DC bus were analyzed. Then, the influence of system grounding mode on the characteristics of the single-pole breakage fault was discussed. It shows that, the flow path of the fault current is related to the location of the single-pole breakage faults; the voltage characteristics of single-pole breakage fault on DC line are related to the power flow direction of converter station; the voltage characteristics of single-pole breakage fault on the link line between the sending-end converter and the DC bus are related to the control mode of converter; the system grounding mode has little effect on the fault characteristics. In addition, sudden load change will affect the current characteristics of the positive and negative lines between the converter station where the sudden load occurs and the sending-end converter station for which the power is transmitted when the fault occurs on the DC line and the link line between the sending-end converter and the DC bus. Finally, the model of the ring flexible DC distribution system was built in PSCAD/EMTDC, and the result confirmed the validity of the theoretical analysis.
|
Received: 29 January 2021
|
|
|
|
|
[1] 李扬, 韦钢, 马钰, 等. 含电动汽车和分布式电源的主动配电网动态重构[J]. 电力系统自动化, 2018, 42(5): 102-110. Li Yang, Wei Gang, Ma Yu, et al.Dynamic reconfiguration of' active distribution network considering electric vehicles and distributed generations[J]. Automation of Electric Power Systems, 2018, 42(5): 102-110. [2] 李再男, 段建东, 路文超, 等. 柔性中压直流配电网线路加速纵联保护[J]. 电力系统自动化, 2021, 45(9): 80-88. Li Zainan, Duan Jiandong, Lu Wenchao, et al.Accelerated line pilot protection of flexible MVDC distribution network[J]. Automation of Electric Power Systems, 2021, 45(9): 80-88. [3] 李海波, 赵宇明, 刘国伟, 等. 基于时序仿真的商业楼宇交流与直流配电系统能效对比[J]. 电工技术学报, 2020, 35(19): 4194-4206. Li Haibo, Zhao Yuming, Liu Guowei, et al.The time sequential simulation based energy efficiency comparison of AC and DC distribution power system in commercial buildings[J]. Transactions of China Electrotechnical Society, 2020, 35(19): 4194-4206. [4] 赖一峰. 直流配电网的电压协同控制及稳定运行研究[J]. 电气技术, 2019, 20(7): 42-47. Lai Yifeng.Research on voltage synergy control and stable operation of DC distribution network[J]. Electrical Engineering, 2019, 20(7): 42-47. [5] Duan Jiandong, Li Zainan, Zhou Yi, et al.Study on the voltage level sequence of future urban DC distribution network in China: a review[J]. International Journal of Electrical Power & Energy Systems, 2020, 117(5): 1-12. [6] 王晓卫, 高杰, 吴磊, 等. 柔性直流配电网高阻接地故障检测方法[J].电工技术学报, 2019, 34(13): 2806-2819. Wang Xiaowei, Gao Jie, Wu Lei, et al.A high impedance fault detection method for flexible DC distribution network[J]. Transactions of China Electrotechnical Society, 2019, 34(13): 2806-2819. [7] 罗志刚, 韦钢, 袁洪涛, 等. 基于区间直觉模糊理论的直流配网规划方案综合决策[J]. 电工技术学报, 2019, 34(10): 2011-2021. Luo Zhigang, Wei Gang, Yuan Hongtao, et al. Comprehensive decision of DC distribution network planning based on interval intuitionistic fuzzy theory[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2011-2021. [8] Zhang Lu, Liang Jun, Tang Wei, et al.Converting AC distribution lines to DC to increase transfer capacity and DG penetration[J]. IEEE Transactions on Smart Grid, 2019, 10(2): 1477-1487. [9] 罗德荣, 贺锐智, 黄守道, 等. 模块化多电平变流器子模块电压分组检测中过电压防护策略[J]. 电工技术学报, 2019, 34(14): 2957-2969. Luo Derong, He Ruizhi, Huang Shoudao, et al.Over-voltage protection strategy for sub-module of modular multilevel converter with reduced sensors[J]. Transactions of China Electrotechnical Society, 2019, 34(14): 2957-2969. [10] 张建坡, 崔涤穹, 田新成, 等. 自阻自均压模块化多电平换流器子模块拓扑及控制[J]. 电工技术学报, 2020, 35(18): 3917-3926. Zhang Jianpo, Cui Diqiong, Tian Xincheng, et al.Self-block and voltage balance modular multilevel converter sub module topology and control[J]. Transactions of China Electrotechnical Society, 2020, 35(18): 3917-3926. [11] 郑涛, 吴琼, 吕文轩, 等. 基于主动限流控制的直流配电网保护及故障隔离方案[J]. 电力系统自动化, 2020, 44(5): 114-121. Zheng Tao, Wu Qiong, Lü Wenxuan, et al.Protection and fault isolation scheme based on active current-limiting control for DC distribution network[J]. Automation of Electric Power Systems, 2020, 44(5): 114-121. [12] Xue Yinglin, Xu Zheng.On the bipolar MMC-HVDC topology suitable for bulk power overhead line transmission configuration, control, and DC fault analysis[J]. IEEE Transactions on Power Delivery, 2014, 29(6): 2420-2429. [13] He JiangBiao, Yang Qichen, Wang Zheng. On-line fault diagnosis and fault-tolerant operation of modular multilevel converters—a comprehensive review[J]. CES Transactions on Electrical Machines and Systems, 2020, 4(4): 360-372. [14] 严逍, 焦彦军, 杜哲. 基于柔性直流技术的一种交直流混合配电网可行性研究[J]. 电力系统保护与控制, 2017, 45(13): 110-116. Yan Xiao, Jiao Yanjun, Du Zhe.Feasibility study of AC/DC hybrid distribution network using VSC-based DC technology[J]. Power System Protection and Control, 2017, 45(13): 110-116. [15] Yang Jing, Fletcher J E, O'Reilly J. Short-circuit and ground fault analyses and location in VSC-based DC network cables[J]. IEEE Transactions on Industrial Electronics, 2012, 59(10): 3827-3837. [16] 戴志辉, 葛红波, 严思齐, 等. 柔性直流配电网故障分析[J]. 电工技术学报, 2018, 33(8): 1863-1874. Dai Zhihui, Ge Hongbo, Yan Siqi, et al.Fault analysis of flexible DC distribution system[J]. Transactions of China Electrotechnical Society, 2018, 33(8): 1863-1874. [17] 戴志辉, 黄敏, 苏怀波. 基于MMC的环状直流配网在不同接地方式下的故障特性分析[J]. 电力系统保护与控制, 2019, 47(1): 1-10. Dai Zhihui, Huang Min, Su Huaibo.Analysis on fault characteristics of MMC-based ring DC distribution networks under different grounding modes[J]. Power System Protection and Control, 2019, 47(1):1-10. [18] 张建坡, 赵成勇. MMC-HVDC直流侧故障特性仿真分析[J]. 电力自动化设备, 2014, 34(7): 32-37. Zhang Jianpo, Zhao Chengyong.Simulation and analysis of DC-link fault characteristics for MMC-HVDC[J]. Electric Power Automation Equipment, 2014, 34(7): 32-37. [19] 行登江, 吴金龙, 王先为, 等. MMC-HVDC系统直流断线故障特性分析[J]. 电网技术, 2015, 39(7): 1825-1832. Xing Dengjiang, Wu Jinlong, Wang Xianwei, et al.Analysis on characteristic of DC transmission line breakage fault in modular multilevel converter based HVDC transmission system[J]. Power System Technology, 2015, 39(7): 1825-1832. [20] 赵越, 石立宝, 姚良忠, 等. 海上风电直流输电系统断线故障保护及恢复策略[J]. 电网技术, 2017, 41(6): 1703-1709. Zhao Yue, Shi Libao, Yao Liangzhong, et al.A fault protection strategy and restorative strategy for DC system incorporating offshore wind farm under open DC line fault[J]. Power System Technology, 2017, 41(6): 1703-1709. [21] 王少伟, 刘天琪, 李保宏, 等. 直流断线故障特性分析及一种基于控制的保护策略[J]. 科学技术与工程, 2019, 19(35): 201-207. Wang Shaowei, Liu Tianqi, Li Baohong, et al.Analysis on characteristic of DC network line breakage fault and a control-based protection strategy[J]. Science Technology and Engineering, 2019, 19(35): 201-207. [22] Jia Ke, Feng Tao, Wang Congbo, et al.Current ratio based breakage protection for flexible DC distribution systems[J]. IEEE Transactions on Power Delivery, 2020, 35(5): 2300-2309. |
|
|
|