|
|
Sensorless Control Strategy of Improved HF Rotating Voltage Injection Based on Estimated Position Feedback Current Demodulation Algorithm |
Mai Zhiqin, Liu Jilong, Xiao Fei, Li Kefeng, Zheng Yunbo |
National Key Laboratory of Science and Technology on Vessel Integrated Power System Naval University of Engineering Wuhan 430033 China |
|
|
Abstract High frequency (HF) rotating voltage injection method is widely used to estimate the rotor position in zero- and low-speed zone for permanent magnet synchronous motor (PMSM), where synchronous frame high-pass filter (SFHF) algorithm is employed for current demodulation. However, the disadvantage of the SFHF algorithm is that not only the current demodulation process is complicated, but also the position error changes with speed. To this end, a current demodulation algorithm based on the estimated position feedback (EPF) is proposed. On one hand, the efficient position error compensation strategy is designed with the EPF algorithm, which helps to eliminate the influence of speed on the accuracy of position estimation. On the other hand, a notch filter (NF) is employed in the position loop to eliminate the harmonic components, which expands the closed-loop bandwidth of the position loop effectively. Thus, the dynamic performance of position estimation is improved under fast acceleration and deceleration conditions. In this paper, the implementation of the traditional HF rotating voltage injection method is reviewed. Then, the EPF current demodulation algorithm and the position estimation error compensation strategy are introduced in detail. Moreover, the principle to expand the position loop bandwidth with NF is analyzed. Finally, the feasibility of the proposed strategy is verified through an PMSM experimental platform.
|
Received: 18 September 2020
|
|
|
|
|
[1] 曹春堂, 兰志勇, 沈凡亨. 永磁同步电机无位置传感器控制系统中初始位置角检测综述[J]. 电气技术, 2020, 21(6): 1-5. Cao Chuntang, Lan Zhiyong, Shen Fanheng.Review of initial position angle detection in sensorless control system of permanent magnet synchronous motor[J]. Electrical Engineering Magazine, 2020, 21(6): 1-5. [2] 刘计龙, 肖飞, 麦志勤, 等. 基于双dq空间的永磁同步电机无位置传感器启动策略[J]. 电工技术学报, 2018, 33(12): 2677-2684. Liu Jilong, Xiao Fei, Mai Zhiqin, et al.Position- sensorless startup strategy for permanent magnet synchronous motor based on double dq space[J]. Transactions of China Electrotechnical Society, 2018, 33(12): 2677-2684. [3] Luo Xin, Tang Qipeng, Shen Anwen, et al.PMSM sensorless control by injecting HF pulsating carrier signal into estimated fixed-frequency rotating reference frame[J]. IEEE Transactions on Industrial Electronics, 2016, 63(4): 2294-2303. [4] 胡静, 简优宗, 杨合民. 一阶高通滤波在发电机低频时转子位置检测角中的应用[J]. 电气技术, 2018, 19(7): 39-42. Hu Jing, Jian Youzong, Yang Hemin.Application of first order high pass filter mathematical model of rotor position detection in low frequency of angle[J]. Electrical Engineering Magazine, 2018, 19(7): 39-42. [5] 王海兵, 赵荣祥, 汤胜清, 等. 永磁同步电机位置检测偏差对驱动系统性能的影响研究[J]. 电工技术学报, 2018, 33(4): 911-918. Wang Haibing, Zhao Rongxiang, Tang Shengqing, et al.Research on the influence of the position detection error to the PMSM drive system[J]. Transactions of China Electrotechnical Society, 2018, 33(4): 911-918. [6] Yang S C, Hsu Y L.Full speed region sensorless drive of permanent-magnet machine combining saliency-based and back-EMF-based drive[J]. IEEE Transactions on Industrial Electronics, 2017, 64(2): 1092-1101. [7] 谈微中, 严新平, 刘正林, 等. 无轴轮缘推进系统的研究现状与展望[J]. 武汉理工大学学报: 交通科学与工程版, 2015, 39(3): 601-605. Tan Weizhong, Yan Xinping, Liu Zhenglin, et al.Technology development and prospect of shaftless rim-driven propulsion system[J]. Journal of Wuhan University of Technology: Transportation Science & Engineering, 2015, 39(3): 601-605. [8] 林卫鹏, 汤宁平, 章金晶. 同步磁阻电动机无位置传感器控制的自起动方法[J]. 电气技术, 2018, 19(2): 16-21. Lin Weipeng, Tang Ningping, Zhang Jinjing.Self- starting method for sensorless control of synchronous reluctance motor[J]. Electrical Engineering Magazine, 2018, 19(2): 16-21. [9] Zhu Zhiqiang, Gong Liuming.Investigation of effectiveness of sensorless operation in carrier-signal- injection-based sensorless-control methods[J]. IEEE Transactions on Industrial Electronics, 2010, 58(8): 3431-3439. [10] Zhang Xing, Li Haoyuan, Yang Shuying, et al.Improved initial rotor position estimation for PMSM drives based on HF pulsating voltage signal injection[J]. IEEE Transactions on Industrial Electronics, 2018, 65(6): 4702-4713. [11] 高健伟. 基于高频注入法的永磁同步电机转子位置估计误差的分析[D]. 济南: 山东大学, 2012. [12] 田士侠. 高频注入法永磁同步电机转子位置检测方法研究[D]. 济南: 山东大学, 2010. [13] Wang Gaolin, Yang Lei, Zhang Guoqiang, et al.Comparative investigation of pseudorandom high frequency signal injection schemes for sensorless IPMSM drives[J]. IEEE Transactions on Power Electronics, 2017, 32(3): 2123-2132. [14] 吴春. 永磁同步电机调速系统无位置传感器控制技术研究[D]. 西安: 西北工业大学, 2015. [15] 李浩源, 张兴, 杨淑英, 等. 基于旋转高频注入的内置式永磁同步电机初始位置检测算法[J]. 电工技术学报, 2018, 33(8): 1724-1731. Li Haoyuan, Zhang Xing, Yang Shuying, et al.A detecting algorithm for initial position of interior permanent magnet synchronous motor based on rotating high frequency injection[J]. Transactions of China Electrotechnical Society, 2018, 33(8): 1724-1731. [16] 杨健, 杨淑英, 李浩源, 等. 基于高频旋转电压注入的永磁同步电机转子初始位置估计方法[J]. 电工技术学报, 2018, 33(15): 3547-3555. Yang Jian, Yang Shuying, Li Haoyuan, et al.Initial rotor position estimation for IPMSM based on high frequency rotating voltage injection[J]. Transactions of China Electrotechnical Society, 2018, 33(15): 3547-3555. [17] 刘善宏, 杨淑英, 李浩源, 等. 基于旋转坐标系解调的内置式永磁同步电机旋转高频注入法位置观测[J]. 电工技术学报, 2020, 35(4): 709-716. Liu Shanhong, Yang Shuying, Li Haoyuan, et al.Rotating high frequency signal injection based on interior permanent magnet synchronous motor rotor position estimation with the demodulation imple- mented on the synchronous reference frame[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 709-716. [18] 龙丁. 交流伺服系统谐振陷波器参数自整定研究[D]. 武汉: 武汉科技大学, 2019. [19] 郑堃, 周林, 龙贵欣, 等. 一种针对数字控制下光伏并网逆变器的陷波器滞后补偿方法[J]. 中国电机工程学报, 2019, 39(6): 1749-1757. Zheng Kun, Zhou Lin, Long Guixin, et al.A lag compensation method based on notch filter for PV grid-connected inverter under digital control[J]. Proceedings of the CSEE, 2019, 39(6): 1749-1757. |
|
|
|