|
|
Two Stage Robust Optimization Method for the Whole-Process Power System Restoration Considering Wind Power Uncertainty |
Gu Xueping1, Bai Yansong1, Li Shaoyan1, Xin Xiangyu1, Wang Tieqiang2 |
1. School of Electrical & Electronic Engineering North China Electric Power University Baoding 071003 China; 2. State Grid Hebei Electric Power Co. Ltd Shijiazhuang 050021 China |
|
|
Abstract The proportion of wind power in power systems will be further improved in the process of low carbon transformation in China. It is of great significance to study the restoration control problem under the new situation to improve the security of power systems. Aiming at the problem of power system restoration decision optimization under the background of wind power integration, a two-stage robust optimization model considering wind power uncertainty was established for the whole power system restoration process in this paper. In the first stage, the node-importance index, load restoration amount and wind power fluctuation scenario set were considered to make a decision on power system component restoration sequence. In the second stage, two-level objectives were included. The outer-level objective was to maximum the impact of wind power fluctuation on load restoration. The inner-level objective was to maximum load restoration in the worst wind power fluctuation scenario. The model of the second stage was transformed into a single-level optimization model by the duality principle. The interval uncertainty set was used to depict the temporal and spatial uncertainty of wind power. The two-stage optimization problem was solved by column-and-constraint generation algorithm, and the heuristic method was used to accelerate the first stage solving process. Finally, the robustness and practicability of the proposed method are verified by the New England 39-bus system and a real power system.
|
Received: 27 July 2021
|
|
|
|
|
[1] 曾辉, 孙峰, 李铁, 等. 澳大利亚“9·28”大停电事故分析及对中国启示[J]. 电力系统自动化, 2017, 41(13): 1-6. Zeng Hui, Sun Feng, Li Tie, et al.Analysis of “9·28” blackout in south Australia and its enlightenment to China[J]. Automation of Electric Power Systems, 2017, 41(13): 1-6. [2] 孙华东, 许涛, 郭强, 等. 英国“8·9”大停电事故分析及对中国电网的启示[J]. 中国电机工程学报, 2019, 39(21): 6183-6192. Sun Huadong, Xu Tao, Guo Qiang, et al.Analysis on blackout in great Britain power grid on August 9th, 2019 and its enlightenment to power grid in China[J]. Proceedings of the CSEE, 2019, 39(21): 6183-6192. [3] 严道波, 文劲宇, 杜治, 等. 2021年得州大停电事故分析及其对电网规划管理的启示[J]. 电力系统保护与控制, 2021, 49(9): 121-128. Yan Daobo, Wen Jinyu, Du Zhi, et al.Analysis of Texas blackout in 2021 and its enlightenment to power system planning management[J]. Power System Protection and Control, 2021, 49(9): 121-128. [4] 周云海, 闵勇. 恢复控制中的系统重构优化算法研究[J]. 中国电机工程学报, 2003, 23(4): 67-70, 188. Zhou Yunhai, Min Yong.Optimal algorithm for system reconstruction[J]. Proceedings of the CSEE, 2003, 23(4): 67-70, 188. [5] 刘威鹏, 刘玉田. 基于非对称Copula函数的风电场黑启动储能优化配置[J]. 电力系统自动化, 2020, 44(19): 47-54. Liu Weipeng, Liu Yutian.Optimal configuration of energy storage for wind farm black-start based on asymmetric Copula function[J]. Automation of Electric Power Systems, 2020, 44(19): 47-54. [6] 李军徽, 尤宏飞, 李翠萍, 等. 基于模型预测控制的风光储黑启动功率协调策略[J]. 电网技术, 2020, 44(10): 3700-3708. Li Junhui, You Hongfei, Li Cuiping, et al.Power coordination strategy based on model predictive control for black start with PV-wind-battery system[J]. Power System Technology, 2020, 44(10): 3700-3708. [7] 刘昌盛, 谢云云, 王晓丰, 等. 基于IGDT的网架重构过程中风电场出力调度[J]. 电力工程技术, 2019, 38(3): 27-33. Liu Changsheng, Xie Yunyun, Wang Xiaofeng, et al.IGDT based power dispatch for wind farms participating in power system restoration[J]. Electric Power Engineering Technology, 2019, 38(3): 27-33. [8] 周宜昌, 刘艳, 顾雪平. 考虑多风电场黑启动价值的机组恢复顺序双层优化决策[J]. 电力系统自动化, 2020, 44(16): 87-97. Zhou Yichang, Liu Yan, Gu Xueping.Bi-level optimization decision for unit recovery sequence considering black-start value of multiple wind farms[J]. Automation of Electric Power Systems, 2020, 44(16): 87-97. [9] 赵瑾, 王洪涛, 曹曦. 计及风电条件风险价值的负荷恢复双层优化[J]. 中国电机工程学报, 2017, 37(18): 5275-5285, 5526. Zhao Jin, Wang Hongtao, Cao Xi.Bi-level optimization of load restoration considering the conditional value at risk of wind power[J]. Proceedings of the CSEE, 2017, 37(18): 5275-5285, 5526. [10] 顾雪平, 周光奇, 李少岩, 等. 考虑风电预测误差相关性的负荷恢复鲁棒优化[J]. 电网技术, 2021, 45(10): 4092-4104. Gu Xueping, Zhou Guangqi, Li Shaoyan, et al.Robust optimization of load restoration scheme considering wind power prediction error correlation[J]. Power System Technology, 2021, 45(10): 4092-4104. [11] Sun Wei, Liu C C, Zhang Li.Optimal generator start-up strategy for bulk power system restoration[J]. IEEE Transactions on Power Systems, 2011, 26(3): 1357-1366. [12] Liu Yan, Gu Xueping.Skeleton-network reconfiguration based on topological characteristics of scale-free networks and discrete particle swarm optimization[J]. IEEE Transactions on Power Systems, 2007, 22(3): 1267-1274. [13] 王洪涛, 刘玉田, 邱夕兆, 等. 基于多agent的电力系统主从递阶恢复决策[J]. 电力系统自动化, 2006, 30(15): 5-9. Wang Hongtao, Liu Yutian, Qiu Xizhao, et al.Multi-agent based Stackelberg decision for power system restoration[J]. Automation of Electric Power Systems, 2006, 30(15): 5-9. [14] Golshani A, Sun Wei, Zhou Qun, et al.Incorporating wind energy in power system restoration planning[J]. IEEE Transactions on Smart Grid, 2019, 10(1): 16-28. [15] 徐秋实, 邓长虹, 赵维兴, 等. 含风电电力系统的多场景鲁棒调度方法[J]. 电网技术, 2014, 38(3): 653-661. Xu Qiushi, Deng Changhong, Zhao Weixing, et al.A multi-scenario robust dispatch method for power grid integrated with wind farms[J]. Power System Technology, 2014, 38(3): 653-661. [16] 周博, 艾小猛, 方家琨, 等. 计及超分辨率风电出力不确定性的连续时间鲁棒机组组合[J]. 电工技术学报, 2021, 36(7): 1456-1467. Zhou Bo, Ai Xiaomeng, Fang Jiakun, et al.Continuous-time modeling based robust unit commitment considering beyond-the-resolution wind power uncertainty[J]. Transactions of China Electrotechnical Society, 2021, 36(7): 1456-1467. [17] 张雨曼, 刘学智, 严正, 等. 光伏-储能-热电联产综合能源系统分解协调优化运行研究[J]. 电工技术学报, 2020, 35(11): 2372-2386. Zhang Yuman, Liu Xuezhi, Yan Zheng, et al.Decomposition-coordination based optimization for PV-BESS-CHP integrated energy systems[J]. Transactions of China Electrotechnical Society, 2020, 35(11): 2372-2386. [18] 蔡瑶, 卢志刚, 孙可, 等. 计及源荷不确定性的独立型交直流混合微网多能源协调优化调度[J]. 电工技术学报, 2021, 36(19): 4107-4120. Cai Yao, Lu Zhigang, Sun Ke, et al.Multi-energy coordinated optimal scheduling of isolated AC/DC hybrid microgrids considering generation and load uncertainties[J]. Transactions of China Electrotechnical Society, 2021, 36(19): 4107-4120. [19] 曹曦, 王洪涛. 大规模电网源荷协调恢复决策与控制方法[J]. 中国电机工程学报, 2017, 37(6): 1666-1675. Cao Xi, Wang Hongtao.Source-load coordinated restoration decision-making and control method for large scale power system[J]. Proceedings of the CSEE, 2017, 37(6): 1666-1675. [20] 王亮, 刘艳, 顾雪平, 等. 综合考虑节点重要度和线路介数的网络重构[J]. 电力系统自动化, 2010, 34(12): 29-33. Wang Liang, Liu Yan, Gu Xueping, et al.Skeleton-network reconfiguration based on node importance and line betweenness[J]. Automation of Electric Power Systems, 2010, 34(12): 29-33. [21] 朱冬雪, 顾雪平, 钟慧荣. 电力系统大停电后机组恢复的多目标优化方法[J]. 电网技术, 2013, 37(3): 814-820. Zhu Dongxue, Gu Xueping, Zhong Huirong.A multi-objective optimization method for post-blackout unit restoration[J]. Power System Technology, 2013, 37(3): 814-820. [22] Yang Jingwei, Zhang Ning, Kang Chongqing, et al.A state-independent linear power flow model with accurate estimation of voltage magnitude[J]. IEEE Transactions on Power Systems, 2017, 32(5): 3607-3617. [23] 叶畅, 曹侃, 丁凯, 等. 基于广义储能的多能源系统不确定优化调度策略[J]. 电工技术学报, 2021, 36(17): 3753-3764. Ye Chang, Cao Kan, Ding Kai, et al.Uncertain optimal dispatch strategy based on generalized energy storage for multi-energy system[J]. Transactions of China Electrotechnical Society, 2021, 36(17): 3753-3764. [24] 李军徽, 侯涛, 穆钢, 等. 电力市场环境下考虑风电调度和调频极限的储能优化控制[J]. 电工技术学报, 2021, 36(9): 1791-1804. Li Junhui, Hou Tao, Mu Gang, et al.Optimal control strategy for energy storage considering wind farm scheduling plan and modulation frequency limitation under electricity market environment[J]. Transactions of China Electrotechnical Society, 2021, 36(9): 1791-1804. [25] Bertsimas D, Litvinov E, Sun X A, et al.Adaptive robust optimization for the security constrained unit commitment problem[J]. IEEE Transactions on Power Systems, 2013, 28(1): 52-63. [26] 曾顺奇, 文福拴, 薛禹胜, 等. 计及操作时间不确定性的电力系统网架重构策略优化[J]. 电力系统自动化, 2011, 35(23): 16-21. Zeng Shunqi, Wen Fushuan, Xue Yusheng, et al.Optimization of network reconfiguration strategy for power systems considering operating time uncertainty[J]. Automation of Electric Power Systems, 2011, 35(23): 16-21. [27] 刘伟佳, 林振智, 文福拴, 等. 计及重要负荷优先恢复的局部电力系统恢复策略[J]. 电力系统自动化, 2013, 37(12): 31-37. Liu Weijia, Lin Zhenzhi, Wen Fushuan, et al.A restoration strategy for a local power system considering critical load pickup[J]. Automation of Electric Power Systems, 2013, 37(12): 31-37. [28] 刘强, 石立宝, 倪以信, 等. 电力系统恢复控制的网络重构智能优化策略[J]. 中国电机工程学报, 2009, 29(13): 8-15. Liu Qiang, Shi Libao, Ni Yixin, et al.Intelligent optimization strategy of the power grid reconfiguration during power system restoration[J]. Proceedings of the CSEE, 2009, 29(13): 8-15. |
|
|
|