[1] 张静, 刘志刚, 鲁小兵, 等. 高速弓网空气动力学研究进展[J]. 铁道学报, 2015, 37(1): 7-15.
Zhang Jing, Liu Zhigang, Lu Xiaobing, et al.Study on aerodynamics development of high-speed pantograph and catenary[J]. Journal of the China Railway Society, 2015, 37(1): 7-15.
[2] 陈忠华, 唐俊, 时光, 等. 弓网强电流滑动电接触摩擦振动分析与建模[J]. 电工技术学报, 2020, 35(18): 3869-3877.
Chen Zhonghua, Tang Jun, Shi Guang, et al.Analysis and modeling of high current sliding electrical contact friction dynamics in pantograph-catenary system[J]. Transactions of China Electrotechnical Society, 2020, 35(18): 3869-3877.
[3] Lee J H, Kim Y G, Paik J S, et al.Performance evaluation and design optimization using differential evolutionary algorithm of the pantograph for the high-speed train[J]. Journal of Mechanical Science and Technology, 2012, 26(10): 3253-3260.
[4] 刘方林. 电气化铁路动态弓网接触电阻研究[J]. 电气技术, 2018, 19(9): 69-72.
Liu Fanglin.Study on dynamic contact resistance between pantograph and catenary in electrified rail- way[J]. Electrical Engineering, 2018, 19(9): 69-72.
[5] 陈忠华, 吴迪, 回立川, 等. 波动载荷下弓网滑动电接触失效研究[J]. 电工技术学报, 2019, 34(21): 4492-4500.
Chen Zhonghua, Wu Di, Hui Lichuan, et al.Research on failure of pantograph-catenary sliding electrical contact under fluctuation load[J]. Transactions of China Electrotechnical Society, 2019, 34(21): 4492-4500.
[6] Wang Hongrui, Liu Zhigang, Song Yang, et al.Dete- ction of contact wire irregularities using a quadratic time-frequency representation of the pantograph- catenary contact force[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(6): 1385-1397.
[7] Kim J W, Yu S N.Design variable optimization for pantograph system of high-speed train using robust design technique[J]. International Journal of Precision Engineering and Manufacturing, 2013, 14(2): 267-273.
[8] 周宁. 350km/h及以上弓网动态行为研究[D]. 成都: 西南交通大学, 2013.
[9] 吴孟臻, 刘洋, 许向红. 高速弓网系统动力学参数敏度分析及优化[J]. 力学学报, 2021, 53(1): 75-83.
Wu Mengzhen, Liu Yang, Xu Xianghong.Sensitivity analysis and optimization on parameters of high speed pantograph-catenary system[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 75-83.
[10] 蒋先国, 古晓东, 邓洪, 等. 基于微动理论的整体吊弦损伤机理及优化研究[J]. 铁道学报, 2019, 41(6): 40-45.
Jiang Xianguo, Gu Xiaodong, Deng Hong, et al.Research on damage mechanism and optimization of integral dropper string based on fretting theory[J]. Journal of the China Railway Society, 2019, 41(6): 40-45.
[11] Zhang Weihua, Zhou Ning, Li Ruiping, et al.Panto- graph and catenary system with double pantographs for high-speed trains at 350 km/h or higher[J]. Journal of Modern Transportation, 2011, 19(1): 7-11.
[12] 时光, 刘健辰, 陈忠华, 等. 基于DE-EDA多目标优化的受电弓模糊控制[J]. 计算机工程与应用, 2016, 52(1): 229-232, 253.
Shi Guang, Liu Jianchen, Chen Zhonghua, et al.Control of pantograph based on DE-EDA multi- objective optimization[J]. Computer Engineering and Applications, 2016, 52(1): 229-232, 253.
[13] Cristina S R, Jimenez J O, Carnicero A.Active control strategy on a catenary-pantograph validated model[J]. Vehicle System Dynamics, 2013, 51(4): 554-569.
[14] Yoshitaka Y, Mitsuru I.Advanced active control of contact force between pantograph and catenary for high-speed trains[J]. Quarterly Report of RTRI, 2012, 53(1): 28-33.
[15] Zhu Bing, Ren Zhiling, Xie Wenjing, et al.Active nonlinear partial-state feedback control of contacting force for a pantograph-catenary system[J]. ISA Transa- ctions, 2019, 91(1): 78-89.
[16] 时光, 陈忠华, 郭凤仪, 等. 基于最优载荷的受电弓自适应终端滑模控制[J]. 电工技术学报, 2017, 32(4): 140-146, 153.
Shi Guang, Chen Zhonghua, Guo Fengyi, et al.Adaptive terminal sliding mode control of pantograph based on optimal load[J]. Transactions of China Elec- trotechnical Society, 2017, 32(4): 140-146, 153.
[17] 时光, 陈忠华, 郭凤仪, 等. 弓网接触力反馈线性化控制[J]. 控制理论与应用, 2016, 33(1): 85-91.
Shi Guang, Chen Zhonghua, Guo Fengyi, et al.Feedback linearization control of load between panto- graph and catenary[J]. Control Theory and Appli- cations, 2016, 33(1): 85-91.
[18] Pisano A, Usai E.Contact force estimation and regulation in active pantographs: an algebraic obser- vability approach[J]. Asian Journal of Control, 2011, 13(6): 761-772.
[19] 张静, 宋宝林, 谢松霖, 等. 基于状态估计的高速受电弓鲁棒预测控制[J]. 电工技术学报, 2021, 36(5): 1075-1083.
Zhang Jing, Song Baolin, Xie Songlin.Robust predictive control of high-speed pantograph based on state estimation[J]. Transactions of China Electro- technical Society, 2021, 36(5): 1075-1083.
[20] Lin Yuchen, Shieh N C, Liu V T.Optimal control for rail vehicle pantograph systems with actuator delays[J]. IET Control Theory and Applications, 2015, 9(13): 1917-1926.
[21] Lu Xiaobing, Liu Zhigang, Song Yang, et al.Estimator- based multi-objective robust control strategy for an active pantograph in high-speed railways[J]. Pro- ceedings of the Institution of Mechanical Engineers Part F-Journal of Rail and Rapid Transit, 2018, 232(4): 1064-1077.
[22] Song Yang, Liu Zhigang, Wang Hongrui, et al.Nonlinear modelling of high-speed catenary based on analytical expressions of cable and truss elements[J]. Vehicle System Dynamics, 2015, 53(10): 1455-1479.
[23] 任辉文. 气压驱动系统特性对受电弓动力学的影响[D]. 长沙: 湖南大学, 2019.
[24] 黄文龙, 胡海涛, 陈俊宇, 等. 枢纽型牵引变电所再生制动能量利用系统能量管理及控制策略[J]. 电工技术学报, 2021, 36(3): 588-598.
Huang Wenlong, Hu Haitao, Chen Junyu, et al.Energy management and control strategy of regener- ative braking energy utilization system in hub traction substation[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 588-598.
[25] 郭伟, 赵洪山. 基于事件触发机制的直流微电网多混合储能系统分层协调控制方法[J]. 电工技术学报, 2020, 35(5): 1140-1151.
Guo Wei, Zhao Hongshan.Coordinated control method of multiple hybrid energy storage system in DC microgrid based on event-triggered mechanism[J]. Transactions of China Electrotechnical Society, 2020, 35(5): 1140-1151.
[26] 王勖成. 有限单元法[M]. 北京: 清华大学出版社, 2003.
[27] 杨京, 王彤, 毕经天, 等. 含直驱风电机组的电力系统次同步振荡鲁棒阻尼控制[J]. 电力系统自动化, 2020, 44(3): 56-65.
Yang Jing, Wang Tong, Bi Jingtian, et al.Robust damping control of subsynchronous oscillation in power system with direct-drive wind turbines[J]. Automation of Electric Power Systems, 2020, 44(3): 56-65.
[28] 邹洲. 基于遗传算法的主动悬架多目标${{H}_{2}}/{{H}_{\infty }}$鲁棒控制[D]. 武汉: 武汉理工大学, 2010.
[29] 周天豪, 杨智, 祝长生, 等. 电磁轴承高速电机转子系统的内模-PID控制[J]. 电工技术学报, 2020, 35(16): 3414-3425.
Zhou Tianhao, Yang Zhi, Zhu Changsheng, et al.Internal model control-PID control of an active magnetic bearing high-speed motor rotor system[J]. Transactions of China Electrotechnical Society, 2020, 35(16): 3414-3425.
[30] Jin Qibing, Liu Qi.IMC-PID design based on model matching approach and closed-loop shaping[J]. ISA Transaction, 2014, 53(2): 462-473.
[31] 苗海涛. 基于空气弹簧高速受电弓的气压伺服主动控制研究[D]. 成都: 西南交通大学, 2009.
[32] 寇发荣, 李冬, 许家楠, 等. 车辆电动静液压主动悬架内模PID控制研究[J]. 液压与气动, 2018(6): 1-7.
Kou Farong, Li Dong, Xu Jianan, et al.Study on internal model PID control of vehicle active suspen- sion with electro-hydrostatic actuator[J]. Chinese Hydraulics and Pneumatics, 2018(6): 1-7. |