|
|
Stochastic Multiresonane for a Fractional Linear Oscillator with Random Viscous Damping Coefficient |
Guo Xiaoying1, Zhou Yingzi1, Wang Lihua1, Wang Shixin2 |
1. School of Intelligent Manufacturing Panzhihua University Panzhihua 617000; 2. School of Electrical Engineering and Electronic Information Xihua University Chengdu 610039 China |
|
|
Abstract Fractional calculus has many excellent characteristics, such as dynamic memory of historical state and path dependence. Therefore, for many practical systems, fractional-order models are more suitable to use with comparison to integer-order models, especially for those dynamic processes with memory. In the study of fractional-order systems, the memory kernel function using Gamma function is a special case of that using Mittag-Leffler function. The latter is more general, especially it contains the characteristic memory time of the system, which can describe the memory effect of medium molecules on the system motion in complex and disordered heterogeneous environment. Therefore, the fractional derivative of Mittag-Leffler function can better describe the performance of the system from the two dimensions of characteristic memory time and fractal dimension. In this paper, the stochastic multiresonance for a fractional linear oscillator with random viscous damping coefficient is investigated. The memory kernel of the fractional oscillator is modeled as a Mittag-Leffler function. Based on linear system theory, applying the definition of Mittag-Leffler function and fractional derivative, the expression of the system output amplitude (SPA) is derived. Stochastic multiresonance is found on the SPA curve versus the memory time of the fractional oscillator. Stochastic resonance occurs on the curves of the SPA versus the noise flatness and the viscous damping coefficient. The SPA behaves nonmonotonically with the variety of the system frequency, of the driving frequency, as well as of the noise correlate time.
|
Received: 18 October 2019
|
|
|
|
|
[1] 刘和平, 刘庆, 张威, 等. 电动汽车用感应电机削弱振动和噪声的随机PWM控制策略[J]. 电工技术学报, 2019, 34(7): 1488-1495. Liu Heping, Liu Qing, Zhang Wei, et al.Random PWM technique for acoustic noise and vibration reduction in induction motors used by electric vehicles[J]. Transactions of China Electrotechnical Society, 2019, 34(7): 1488-1495. [2] 刘颜, 董光冬, 张方华. 反激变换器共模噪声的抑制[J]. 电工技术学报, 2019, 34(22): 4795-4803. Liu Yan, Dong Guangdong, Zhang Fanghua.Reducing common mode noise in flyback converter[J]. Transactions of China Electrotechnical Society, 2019, 34(22): 4795-4803. [3] 周凯, 黄永禄, 谢敏, 等. 短时奇异值分解用于局放信号混合噪声抑制[J]. 电工技术学报, 2019, 34(11): 2435-2443. Zhou Kai, Huang Yonglu, Xie Min, et al.Mixed noises suppression of partial discharge signal employing short-time singular value decomposition[J]. Transactions of China Electrotechnical Society, 2019, 34(11): 2435-2443. [4] 江师齐, 刘艺涛, 银杉, 等. 基于噪声源阻抗提取的单相逆变器电磁干扰滤波器的设计[J]. 电工技术学报, 2019, 34(17): 3552-3562. Jiang Shiqi, Liu Yitao, Yin Shan, et al.Electromagnetic interference filter design of single-phase inverter based on the noise source impedance extraction[J]. Transactions of China Electrotechnical Society, 2019, 34(17): 3552-3562. [5] 李扬, 李京, 陈亮, 等. 复杂噪声条件下基于抗差容积卡尔曼滤波的发电机动态状态估计[J]. 电工技术学报, 2019, 34(17): 3651-3660. Li Yang, Li Jing, Chen Liang, et al.Dynamic state estimation of synchronous machines based on robust cubature Kalman filter under complex measurement noise conditions[J]. Transactions of China Electrotechnical Society, 2019, 34(17): 3651-3660. [6] 刘广凯, 全厚德, 康艳梅, 等. 一种随机共振增强正弦信号的二次多项式接收方法[J]. 物理学报, 2019, 68(21): 32-42. Liu Guangkai, Quan Houde, Kang Yanmei, et al.A quadratic polynomial receiving scheme for sine signals enhanced by stochastic resonance[J]. Acta Physica Sinica, 2019, 68(21): 32-42. [7] 张政, 马金全. 低信噪比通信信号的自适应调参随机共振方法[J]. 电子学报, 2019, 47(11): 2323-2329. Zhang Zheng, Ma Jinquan.Adaptive parameter-tuning stochastic resonance method for communication signals under low SNR[J]. Acta Electronica Sinica, 2019, 47(11): 2323-2329. [8] 刘广凯, 全厚德, 孙慧贤, 等. 极低信噪比下对偶序列跳频信号的随机共振检测方法[J]. 电子与信息学报, 2019, 41(10): 2342-2349. Liu Guangkai, Quan Houde, Sun Huixian, et al.Stochastic resonance detection method for the dual-sequence frequency hopping signal under extremely low signal-to-noise ratio[J]. Journal of Electronics and Information Technology, 2019, 41(10): 2342-2349. [9] Rossikhin Y A, Shitikova M V.Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results[J]. Applied Mechanics Reviews, 2010, 63(1): 010801-53. [10] Adolfsson K, Enelund M, Olsson P.On the fractional order model of viscoelasticity[J]. Mechanics of Time-Dependent Materials, 2005, 9(7): 15-34. [11] Müller S, Kästner M, Brummund J, et al.On the numerical handling of fractional viscoelastic material models in a FE analysis[J]. Compute Mechanics, 2013, 51(9): 999-1012. [12] Sieber J, Wagg D J, Adhikari S.On the interaction of exponential non-viscous damping with symmetric nonlinearities[J]. Journal of Sound Vibration, 2008, 314(6): 1-11. [13] Ruzziconi L, Litak G, Lenci S.Nonlinear oscillations, transition to chaos and escape in the Duffing system with non-classical damping[J]. Journal of Vibro-engineering, 2011, 13(7): 22-38. [14] He Guitian, Luo Renze, Luo Maokang.Stochastic resonance in the overdamped fractional oscillator subject to multiplicative dichotomous noise[J]. Physica Scripta, 2013, 88(12): 065009-6. [15] Mankin R, Rekker A.Memory-enhanced energetic stability for a fractional oscillator with fluctuating frequency[J]. Physical Review E, 2010, 81(5): 041122-4. [16] He Guitian, Tian Yan, Luo Maokang.Stochastic resonance in an underdamped fractional oscillator with signal-modulated noise[J]. Journal of Statistical Mechanics: Theory and Experiment, 2014, 23(7): 05018-18. [17] Huang Zhiqi, Guo Feng.Stochastic resonance in a fractional linear oscillator subject to random viscous damping and signal-modulated noise[J]. Chinese Journal of Physics, 2016, 54(10): 69-76. [18] Lin Lifeng, Chen Cong, Wang Huiqi.Trichotomous noise induced stochastic resonance in a fractional oscillator with random damping and random frequency[J]. Journal of Statistical Mechanics: Theory and Experiment, 2016, 23(2): 023021-21. [19] Zhong Suchuan, Wei Kun, Gao Shilong, et al.Trichotomous noise induced resonance behavior for a fractional oscillator with random mass[J]. Journal of Statistical Physics, 2015, 159(12): 195-209. [20] Guo Feng, Zhu Chengyin, Cheng Xiaofeng, et al.Stochastic resonance in a fractional harmonic oscillator subject to random mass and signal-modulated noise[J]. Physica A, 2016, 459(6): 86-91. [21] 郑永军, 祝增献, 朱善安. 非线性分数阶双稳系统逻辑随机共振的研究[J]. 计量学报, 2017, 38(5): 637-640. Zheng Yongjin, Zhu Zengxian, Zhu Shanan.Logic stochastic resonance induced by a nonlinear fractional bistable system[J]. Acta Metrologic Sinica, 2017, 38(5): 637-640. [22] 赖莉, 屠浙, 罗懋康. 色噪声环境下系统记忆性对分数阶布朗马达合作输运特性的影响[J]. 四川大学学报(自然科学版), 2016, 53(4): 705-712. Lai Li, Tu Zhe, Luo Maokang.Influence of system memory on the transport property of fractional coupled Brown motor with colored noise[J]. Journal of Sichuan University(Natural Science Edition), 2016, 53(4): 705-712. [23] 秦天奇, 王飞, 杨博, 等. 带反馈的分数阶耦合布朗马达的定向输运[J]. 物理学报, 2015, 64(12): 87-94. Qin Tianqi, Wang Fei, Yang Bo, et al.Transport properties of fractional coupled Brown motors in ratchet potential with feedback[J]. Acta Physics Sinica, 2015, 64(12): 87-94. [24] 公徐路, 许鹏飞. 含时滞反馈与涨落质量的记忆阻尼系统的随机共振[J]. 力学学报, 2018, 50(4): 880-889. Gong Xulu, Xu Pengfei.Stochastic resonance of a memorial-damped system with time delay feedback and fluctuating mass[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 880-889. [25] Vinales A D, Desposito M A.Anomalous diffusion induced by a mittag-leffler correlated noise[J]. Phyical Review E, 2007, 75(2): 042102-4. [26] Podlubny I.Fractional differential equations[M]. New York: Academic Press, 1999. [27] Sokia E, Mankin R, Primimets J.Response of a generalized Langevin system to a multiplicative trichotomous noise[J]. Recent Advances in Fluid Mechanics, Heat and Mass Transfer and Biology, 2011, 34(6): 87-93. [28] Bier M, Astumian R D.Biasing brownian motion in different directions in a 3-state fluctuating potential and an application for the separation of small particles[J]. Physical Review Letters, 1996, 76(7): 4277-4280. [29] Chen Lincong, Wang Weihua, Li Zhongshen, et al.Stationary response of Duffing oscillator with hardening stiffness and fractional derivative[J]. International Journal of Non-Linear Mechanics, 2013, 48(8): 44-50. [30] Guo Feng, Li Heng, Liu Jing.Stochastic resonance in a linear oscillator with random frequency subject to quadratic noise[J]. Chinese Journal of Physics, 2015, 53(5): 020701-9. [31] Guo Feng, Li Heng, Liu Jing.Stochastic resonance in a linear system with random damping parameter driven by trichotomous noise[J]. Physica A, 2014, 409(7): 1-8. [32] Soika E, Mankin R, Ainsaar A.Resonant behavior of a fractional oscillator with fluctuating frequency[J]. Physica Review E, 2010, 81(9): 011141-11. [33] Weber S V, Spakowitz A J, Theriot J.Sub-diffusively through a viscoelastic cytoplasm[J]. Physical Review Letter, 2010, 104(6): 238102-4. [34] Mankin R, Ainsaar A A, Reiter E.Trichotomous noise-induced transitions[J]. Physical Review E, 1999, 60(8): 1374-1380. [35] Kubo R.The fluctuation-dissipation theorem[J]. Reports on Progress in Physics, 1966, 29(7): 255-285. [36] Shapiro V E, Loginov V M.Formulae of differentiation and their use for solving stochastic equations[J]. Physica A, 1978, 91(8): 563-574. [37] Laas K, Mankin R, Rekker A.Constructive influence of noise flatness and friction on the resonant behavior of a harmonic oscillator with fluctuating frequency[J]. Physical Review E, 2009, 79(9): 051128-4. |
|
|
|