|
|
Analysis of Decomposition Path and Chemical Reaction Rate of Environmentally Friendly Medium HFO-1234ze(E) |
Ke Kun1,2, Tian Shuangshuang1, Zhang Xiaoxing1, Xu Zhengwang1, Wang Yufei1 |
1. Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment Hubei University of Technology Wuhan 430068 China; 2. State Grid Hubei Power Company Huang shi Power Supply Company Huangshi 435000 China |
|
|
Abstract In recent years, HFO-1234ze(E) (C3H2F4) has been regarded by researchers in the electric power industry as a new environmental gas with great potential for application in low and middle voltage equipment. However, the decomposition process of the molecule and the chemical reaction rate of the product have not been studied. Based on density functional theory (DFT) to calculate the HFO-1234ze(E) the basic properties, the law of bond breaking and bonding of gas molecules, the enthalpy change of the reaction, and the chemical reaction rate. Infer the possible decomposition and its compound path, and analyze the frequency characteristics of the decomposition products. Finally, through the power frequency breakdown discharge test. Using gas chromatography mass spectrometer (GC-MS) to qualitatively analyze the decomposition products. It was found that the primary dissociation pathways of HFO-1234ze(E) molecule were mainly C=C double bond, C-H and C-F single bond. The free radical F has more paths, and the corresponding enthalpy change is lower, and it is dominant in the decomposition process. Through the calculation of the chemical reaction rate, it is found that the C-H bond reaction is easier to occur, which verifies that the C-H bond has high chemical reactivity and a large number of free radicals H. Analysis of the frequency characteristics of the decomposition products found that all products except cis-C3H2F4 have stable structures. At the same time, the CF4, C2F6, C3F6 and other products produced by the decomposition test are basically consistent with the simulation results, which verifies the simulation calculation.
|
Received: 12 October 2020
|
|
|
|
|
[1] 唐炬, 关伟民, 张博. 高电压工程基础[M]. 北京: 中国电力出版社, 2018. [2] 周朕蕊, 韩冬, 赵明月, 等. SF6替代气体分解特性的研究综述[J]. 电工技术学报, 2020, 35(23): 4998-5014. Zhou Zhenrui, Han Dong, Zhao Mingyue, et al.Review on decomposition characteristics of SF6 alternative gases[J]. Transactions of China Electrotechnical Society, 2020, 35(23): 4998-5014. [3] 高克利, 颜湘莲, 刘焱, 等. 环保气体绝缘管道技术研究进展[J]. 电工技术学报, 2020, 35(1): 3-20. Gao Keli, Yan Xianglian, Liu Yan, et al.Progress of technology for environment-friendly gas insulated transmission line[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 3-20. [4] 张晓星, 邓载韬, 傅明利, 等. 少量O2对c-C4F8/N2混合气体击穿与分解特性的影响[J]. 高电压技术, 2019, 45(3): 708-715. Zhang Xiaoxing, Deng Zaitao, Fu Mingli, et al.Effect of small amount of O2 on breakdown and decom-position characteristics of c-C4F8/N2 mixture gas[J]. High Voltage Engineering, 2019, 45(3): 708-715. [5] 肖焓艳, 张晓星, 肖淞, 等. 环境介质对介质阻挡放电降解SF6影响的实验[J].电工技术学报, 2017, 32(20): 20-27. Xiao Hanyan, Zhang Xiaoxing, Xiao Song, et al.Experiment of effects of ambient medium on sulfur hexafluoride degradation for a double dielectric barrier discharge reactor[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 20-27. [6] 吴静, 朱潜挺, 王诗琪, 等. 巴黎协定背景下全球减排博弈模拟研究[J]. 气候变化研究进展, 2018, 14(2): 182-190. Wu Jing, Zhu Qianting, Wang Shiqi.et al.Game simulation on emission reduction under the background of the Paris Agreement[J]. Climate Change Research, 2018, 14(2): 182-190. [7] 杜建国. 我国全面启动碳交易市场[J]. 生态经济, 2018, 34(3): 10-13. Du Jianguo.China has fully launched the carbon trading market[J]. Ecological Economy, 2018, 34(3): 10-13. [8] 袁瑞君, 李涵, 郑哲宇, 等. 气体绝缘输电线路用C3F7CN/CO2混合气体与环氧树脂相容性试验[J]. 电工技术学报, 2020, 35(1): 70-79. Yuan Ruijun, Li Han, Zheng Zheyu, et al.Experiment on the compatibility between C3F7CN/CO2 gas mixture and epoxy resin used in gas insulated transmission line[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 70-79. [9] 王小华, 傅熊雄, 韩国辉, 等. C5F10O/CO2混合气体的绝缘性能[J]. 高电压技术, 2017(3): 33-38. Wang Xiaohua, Fu Xiongxiong, Han Guohui, et al.Insulation performance of C5F10O/CO2 gas mixture[J]. High Voltage Engineering, 2017(3): 33-38. [10] 赵明月, 韩冬, 韩先才, 等. C6F12O/N2与C6F12O/空气混合气体的电晕放电分解产物分析[J]. 电工电能新技术, 2018, 037(11): 1-8. Zhao Mingyue, Han Dong, Han Xiancai.et al.Decomposition by-products of C6F12O/N2 and C6F12O/air mixed gases under AC 50Hz corona discharge[J]. Advanced Technology of Electrical Engineering and Energy, 2018, 37(11): 1-8. [11] Silvant S, Gaudart G, Huguenot P, et al.Detailed analysis of live tanks and GIS circuit breakers using a new environmental friendly gas[C]// CIGRE 2016. Paris, France, 2016: A3-114. [12] Prévé C, Maladen R, Piccoz D.Method for validation of new eco-friendly insulating gases for medium voltage equipment[C]//2016 IEEE International Conference on Dielectrics, Montpellier, France, 2016: 235-240. [13] Hyrenbach Maik, Zache Sache.Alternative insulation gas for medium-voltage switchgear[C]//2016 Petroleum and Chemical Industry Conference Europe (PCIC Europe), IEEE, 2016. [14] Magne Saxegaard, Martin Kristoffersen, Patrick Stoller, et al.Dielectric properties of gases suitable for secondary medium voltage switchgear[C]//23rd International Conference on Electricity Distribution, 2015: 0926. [15] Stoller P C, Doiron C B, Tehlar D, et al.Mixtures of CO2 and C5F10O perfluoroketone for high voltage applications[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(5): 2712-2721. [16] Mantilla J D, Gariboldi N, Grob S, et al.Investigation of the insulation performance of a new gas mixture with extremely low GWP[C]//2014 IEEE Electrical Insulation Conference (EIC), Philadelphia, PA, USA, 2014: 469-473. [17] Stoller P C, Doiron C B, Tehlar D, et al.Mixtures of CO2 and C5F10O perfluoroketone for high voltage applications[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2017, 24(5): 2712-2721. [18] Mclinden M J O, Thol M, Lemmon E W. Thermodynamic properties of trans-1, 3, -3, 3-tetrafluoropropene[R1234ze(E)]: measurements of density and vapor pressure and a comprehensive equation of state[C]//International Refrigeration and Air Conditioning Conference, Purdue, 2010, 2189(1-8). [19] Christophe Preve, Gérard Lahaye, Myriam Richaud.Hazard study of MV switchgear with SF6 alternative gas in electrical room[C]//24th International Conference on Electricity Distribution, Glasgow, 2017: 198-201. [20] Abderrahmane B, Abderrahmane (Manu) H. Recent advances in the quest for a new insulation gas with a low impact on the environment to replace Sulfur Hexaflfluoride (SF6) gas in high-voltage power network applications[J]. Energies, 2017, 10(8): 1216. [21] Rusch G M.The development of environmentally acceptable fluorocarbons[J]. Critical Reviews in Toxicology, 2018, 48(8): 615-665. [22] 陈琪, 张晓星, 李祎, 等. 环保绝缘介质C4F7N/CO2/O2混合气体的放电分解特性[J]. 电工技术学报, 2020, 35(1): 80-87. Chen Qi, Zhang Xiaoxing, Li Yi, et al.The discharge decomposition characteristics of environmental-friendly insulating medium C4F7N/CO2/O2 gas mixture[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 80-87. [23] Zhong Linlin, Rong Mingzhe, Wang Xiaohua, et al.Compositions, thermodynamic properties, and transport coefficients of high-temperature C5F10O mixed with CO2 and O2 as substitutes for SF6 to reduce global warming potential[J]. AIP Advances, 2017(7): 075003. [24] 田双双, 张晓星, 肖淞, 等. 工频交流电压下C6F12O与N2混合气体的击穿特性和分解特性[J].中国电机工程学报, 2018, 38(10): 3125-3132, 3165. Tian Shuangshuang, Zhang Xiaoxing, Xiao Song, et al.Breakdown characteristics and decomposition characteristics of C6F12O and N2 mixed gas under AC voltage[J]. Proceedings of the CSEE, 2018, 38(10): 3125-3132, 3165. [25] 李善星. HFO-1234ze(E)饱和蒸气压方程和CO2混合物热力学性质的研究[D]. 太原: 太原理工大学, 2017. [26] 张聪. SF6替代气体基于GWP筛选方法以及HFO/N2混合气体交流击穿特性[D]. 哈尔滨: 哈尔滨理工大学, 2019. [27] Chachereau A, Rabie M, Franck C M.Electron swarm parameters of the hydrofluoroolefine HFO1234ze[J]. Plasma Sources Science and Technology, 2016, 25(4): 045005. [28] Myriam Koch.Prediction of breakdown voltages in novel gases for high voltage insulation[D]. Zurich, Switzerland, ETH-Zürich: 2015. [29] Tatarinov A V, Bilera I V, Avataeva S V, et al.Dielectric barrier discharge processing of trans-CF3CH=CHF and CF3C(O)CF(CF3)2, their mixtures with air, N2, CO2 and analysis of their decomposition products[J]. Plasma Chemistry & Plasma Processing, 2015, 35(5): 845-862. [30] Lin Lin, Chen Qingguo, Wang Xinyu, et al.Study on the decomposition mechanism of the HFO1234zeE/ N2 gas mixture[J]. IEEE Transactions on Plasma Science, 2020, 48(4): 1130-1137. [31] Haynes W M.CRC Handbook of Chemistry and Physics[Z]. 80th ed. New York: CRC Press, 1999. [32] Xiao Song, Cressault Y, Zhang Xiaoxing, et al.The influence of Cu, Al, or Fe on the insulating capacity of CF3I[J].Physics of Plasmas, 2016, 23(12): 123505. [33] Hohenberg P, Kohn W.Inhomogeneous electron gas[J]. Physical Review, 1964, 136: B864-B871. [34] Chen Li, Zhang Boya, Xiong Jiayu, et al.Decomposition mechanism and kinetics of iso-C4 perfluoronitrile(C4F7N) plasmas[J]. Journal of Applied Physics, 2019, 126: 163303. [35] Perdew J P, Wang Yue.Accurate and simple analytic representation of the electron-gas correlation energy[J].Physical Review B: Condensed Matter and Materials Physics, 1992, 45(23): 13244-13249. [36] Zhang Xiao, Xiao Song, Zhang Ji, et al.Influence of humidity on the decomposition products and insulating characteristics of CF3I[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2016, 23(2): 819-828. [37] Xiao Song, Li Yi, Zhang Xiaoxing, et al.Formation mechanism of CF3I discharge components and effect of oxygen on decomposition[J].Journal of Physics D: Applied Physics, 2017, 50(15): 155601. [38] 吴学科, 唐延林, 方世诚, 等. 外电场作用下SF6分子结构与红外光谱[J]. 原子与分子物理学报, 2016, 33(3): 385-391. Wu Xueke, Tang Yanlin, Fang Shicheng, et al.Molecular structure and infrared spectrum for SF6 under external electric fields[J]. Journal of Atomic and Molecular Physics, 2016, 33(3): 385-391. [39] 李祎, 张晓星, 肖淞, 等. 环保型绝缘介质C5F10O放电分解特性[J].中国电机工程学报, 2018, 38(14): 4298-4306, 4336. Li Yi, Zhang Xiaoxing, Xiao Song, et al.Study on the discharge decomposition characteristics of an environmental-friendly insulating medium C5F10O[J]. Proceedings of the CSEE, 2018, 38(14): 4298-4306, 4336. [40] 张晓虹, 张亮, 乐波, 等. 基于局部放电的矩特征分析大电机主绝缘的老化[J]. 中国电机工程学报, 2002, 22(5): 94-98. Zhang Xiaohong, Zhang Liang, Yue Bo.et al.Analysis on aging condition of stator winding insulation of generator based on the moment characteristics of partial discharge[J]. Proceedings of the CSEE, 2002, 22(5): 94-98. |
|
|
|