|
|
Development of Electromagnetic Pulse Welding Equipment for Plates and Experimental Research on Magnesium/Aluminum Alloy Welding |
Li Chengxiang1, Du Jian1,2, Zhou Yan1, Shen Ting1, Yao Chenguo1 |
1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China; 2. State Grid Chongqing Electric Power Company Yongchuan Power Supply Branch Chongqing 402160 China |
|
|
Abstract Magnesium alloys and aluminum alloys are used in industry as light metals. Because of the excellent properties, they are expected to replace steel in the manufacture of lightweight equipment. However, due to the differences in physical and chemical properties of magnesium alloys and aluminum alloys, it is difficult to achieve reliable welding in traditional processes. Electromagnetic pulse welding (EMPW) technology applies electromagnetic force to achieve metallurgical bonding between metal materials, which is expected to solve the welding problems of magnesium alloys and aluminum alloys. In order to explore the feasibility and influencing factors of EMPW of magnesium alloys and aluminum alloys, based on the principle of EMPW, this paper developed a set of 28kJ EMPW equipment for plates. Then the external conditions (discharge voltage and welding gap) required for EMPW of magnesium alloy plates (parent plates) and aluminum alloy plates (flying plates) were developed. The influence of the magnesium's characteristics on the properties of joints was also studied in experiments. The results show that the reliable welding of magnesium alloy plates and aluminum alloy plates can be achieved by EMPW. Within a certain range, the welding performance will be improved with the increase of discharge voltage. The mechanical properties of the joint first increase and then decrease with the increase of the welding gap. Moreover, the mechanical anisotropy caused by the particular structure of the magnesium alloy plates will affect the joint performance. Specifically, under the same conditions, the tensile strength of the welded joint is the biggest and the worst when the angle between the welding direction and the rolling direction is 0°and 90°, respectively. This paper can provide technical support and reference for EMPW of magnesium alloys and aluminum alloys.
|
Received: 24 March 2020
|
|
|
|
|
[1] 范子杰, 桂良进, 苏瑞意. 汽车轻量化技术的研究与进展[J]. 汽车安全与节能学报, 2014, 5(1): 5-20. Fan Zijie, Gui Liangjin, Su Ruiyi.Research and development of automotive lightweight technology[J]. Journal of Automotive Safety and Energy, 2014, 5(1): 5-20. [2] 冯美斌. 汽车轻量化技术中新材料的发展及应用[J]. 汽车工程, 2006, 28(3): 4-11. Feng Meibin.Development and applications of new materials in automotive lightweighting technologies[J]. Automotive Engineering, 2006, 28(3): 4-11. [3] 王军, 冯吉才. 镁铝异种金属焊接研究现状与进展[J]. 焊接, 2007(9): 21-25, 67. Wang Jun, Feng Jicai.Research status and develop- ment trend of welding magnesium and aluminum[J]. Welding & Joining, 2007(9): 21-25, 67. [4] 许有肖, 李亚江, 王娟, 等. Mg/Al异种金属焊接研究现状[J]. 现代焊接, 2011(6): 1-5. Xu Youxiao, Li Yajiang, Wang Juan, et al.The study on the welding of Mg/Al dissimilar metal[J]. Modern Welding, 2011(6): 1-5. [5] 邱立, 李彦涛, 苏攀, 等. 电磁成形中电磁技术问题研究进展[J]. 电工技术学报, 2019, 34(11): 2247-2259. Qiu Li, Li Yantao, Su Pan, et al.Research on electro- magnetic problems in electromagnetic forming process[J]. Transactions of China Electrotechnical Society, 2019, 34(11): 2247-2259. [6] Kumar R, Sahoo S, Sarkar B, et al.Development of electromagnetic welding facility of flat plates for nuclear industry[J]. Journal of Physics: Conference Series, 2017, 823: 012039. [7] 黎镇浩, 曹全梁, 赖智鹏, 等. 电流丝法在电磁成形线圈电流和工件电磁力计算中的应用[J]. 电工技术学报, 2018, 33(18): 4181-4190. Li Zhenhao, Chao Quanliang, Lai Zhipeng, et al.Application of current filament method on the calculation of current and force in electromagnetic forming[J]. Transactions of China Electrotechnical Society, 2018, 33(18): 4181-4190. [8] Volobuev I V, Legeza A V.Transformations in joints produced by magnetic-pulse welding[J]. Welding Production (English Translation of Svarochnoe Proizvodstvo), 1972, 19(8): 12-15. [9] Kore S D, Date P P, Kulkarni S V.Electromagnetic impact welding of aluminum to stainless steel sheets[J]. Journal of Materials Processing Tech- nology, 2008, 208(1-3): 486-493. [10] Marya M, Marya S.Interfacial microstructures and temperatures in aluminium-copper electromagnetic pulse welds[J]. Science and Technology of Welding and Joining, 2004, 9(6): 541-547. [11] Patra S, Arora K S, Shome M, et al.Interface characteristics and performance of magnetic pulse welded copper-steel tubes[J]. Journal of Materials Processing Technology, 2017, 245: 278-286. [12] 于海平, 范治松, 赵岩, 等. 紫铜-碳钢磁脉冲焊接接头界面形貌研究[J]. 材料科学与工艺, 2015, 23(3): 1-6. Yu Haiping, Fan Zhisong, Zhao Yan, et al.Research on magnetic pulse welding interface of copper-carbon steel[J]. Materials Science and Technology, 2015, 23(3): 1-6. [13] 于海平, 赵岩, 李春峰. 铜弹带磁脉冲焊接接头的力学性能[J]. 兵器材料科学与工程, 2015, 38(3): 8-12. Yu Haiping, Zhao Yan, Li Chunfeng, et al.Mechani- cal properties of magnetic pulse welding joint of copper rotating band[J]. Ordnance Material Science and Engineering, 2015, 38(3): 8-12. [14] Xu Zhidan, Yu Haiping, Li Chunfeng, et al.Interface microstructure of Al-Fe tubes joint by magnetic pulse welding[J]. Journal of Iron and Steel Research International, 2012, 19: 442-445. [15] 尹成凯. 3A21铝合金和20#钢管-管磁脉冲焊接工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2010. [16] 常晶舒, 陈健, 冷冰, 等. 国内电磁脉冲焊接技术研究进展与展望[J]. 焊接, 2019(5): 13-17, 65. Chang Jingshu, Chen Jian, Leng Bing, et al.Research progress and prospect of electromagnetic pulse welding technology in China[J]. Welding & Joining, 2019(5): 13-17, 65. [17] Kore S D, Date P P, Kulkarni S V, et al.Electro- magnetic impact welding of copper-to-copper sheets[J]. International Journal of Material Forming, 2010, 3(2): 117-121. [18] 周纹霆, 董守龙, 王晓雨, 等. 电磁脉冲焊接电缆接头的装置的研制及测试[J]. 电工技术学报, 2019, 34(11): 2424-2434. Zhou Wenting, Dong Shoulong, Wang Xiaoyu, et al.Development and test of electromagnetic pulse welding cable joint device[J]. Transactions of China Electrotechnical Society, 2019, 34(11): 2424-2434. [19] 邱立, 余一杰, 聂小鹏, 等. 管件电磁胀形过程中的材料变形性能问题与电磁力加载方案[J]. 电工技术学报, 2019, 34(2): 14-20. Qiu Li, Yu Yijie, Nie Xiaopeng, et al.Study on material deformation performance and electromagnetic force loading in electromagnetic tube expansion process[J]. Transactions of China Electrotechnical Society, 2019, 34(2): 14-20. [20] 邱立, 杨新森, 常鹏, 等. 双线圈轴向压缩式管件电磁胀形电磁力分布规律与管件成形性能研究[J]. 电工技术学报, 2019, 34(14): 2855-2862. Qiu Li, Yang Xinsen, Chang Peng, et al.Electro- magnetic force distribution and forming performance in electromagnetic tube expansion process with two coils[J]. Transactions of China Electrotechnical Society, 2019, 34(14): 2855-2862. [21] 黄建军. 聚能射流对运动体斜侵彻的仿真研究[D].太原: 中北大学, 2015. [22] Deribas A A, Nesterenko V F, Simonov V A.Third international symposium on the use of explosive energy in manufacturing metallic materials of new properties[J]. Combustion, Explosion, and Shock Waves, 1978, 13(3): 417-423. [23] Meyers M A.Dynamic behavior of materials[M]. New York: John Wiley & Sons Inc., 1994. [24] 戴玲, 周正阳, 南敬, 等. 基于六间隙棒电极结构的沿面击穿型触发真空开关的工作特点[J]. 电工技术学报, 2012, 27(10): 128-134. Dai Ling, Zhou Zhengyang, Nan Jing, et al.Charac- teristics of a surface-breakdown triggered vacuum switch with six-gap rod electrode system[J]. Transa- ctions of China Electrotechnical Society, 2012, 27(10): 128-134. [25] Schäfer R, Pasquale P.The electromagnetic pulse technology (EMPT): forming, welding, crimping and cutting[J]. Biuletyn Instytutu Spawalnictwa w Gliwicach, 2014, 58(2): 50-57. [26] Koen F, Irene K, Wim D W.Electromagnetic pulse welding of tubular products: influence of process parameters and workpiece geometry on the joint characteristics and investigation of suitable support systems for the target tube[J]. Metal, 2019, 9(5): 514-537. [27] 刘庆. 镁合金塑性变形机理研究进展[J]. 金属学报, 2010, 46(11): 1458-1472. Liu Qing.Research progress on plastic deformation mechanism of Mg allyos[J]. Acta Metallurgica Sinica, 2010, 46(11): 1458-1472. [28] 张志强, 乐启炽, 崔建忠. 轧制工艺对AZ31B镁合金薄板组织与性能的影响[J]. 材料热处理学报, 2010, 31(4): 93-97. Zhang Zhiqiang, Le Qichi, Cui Jianzhong.Effect of rolling process on microstructure and mechanical properties of AZ31 magnesium alloy sheet[J]. Transa- ctions of Materials and Heat Treatment, 2010, 31(4): 93-97. [29] Wang Puquan, Chen Daolun, Ran Yang, et al.Fracture characteristics and analysis in dissimilar Cu-Al alloy joints formed via electromagnetic pulse welding[J]. Materials, 2019, 12(20): 3368. [30] Geng Huihui, Mao Jingqi, Zhang Xu, et al.Strain rate sensitivity of Al-Fe magnetic pulse welds[J]. Journal of Materials Processing Technology, 2018, 262: 1-10. |
|
|
|