|
|
A Full-State Variable Predictive Torque Control of Current Source Converter Fed Permanent Magnet Synchronous Motor Drives |
Li Yu1, Guo Hong2, Ping Zhaochun2, Wang Xiaohui1, Zhang Zhenbin1 |
1. School of Electrical Engineering Shandong University Jinan 250061 China; 2. CNOOC Research Institute Co. Ltd Beijing 100028 China |
|
|
Abstract The current source converter (CSC) is widely used in long cable drives and medium voltage drives due to its friendly output voltage and short-circuits protection capability. The filter capacitor of the CSC and the electromagnetic dynamics equation of the motor constitute a second-order system, which has a natural resonance frequency. In this paper, the input variables are solved to achieve the deadbeat control performance based on the mathematical model of the control plant. Then, we put the dq-axis current, output capacitance voltage and switch penalty term in a unified cost function, and a predictive torque control (PTC) strategy with full state variables (FSV) is proposed. The proposed FSV-PTC can effectively suppress the energy oscillation between the filter capacitor and the stator inductance, and reduce the torque ripple. Moreover, the design criteria of sampling frequency and switch penalty weight factor is given. Finally, the control performance of the CSC-fed permanent magnet synchronous drive system is verified through hardware-in-the-loop (HiL) test. The test results show that the proposed FSV-PTC has a small steady-state torque ripple and fast torque response.
|
Received: 19 June 2020
|
|
|
|
|
[1] Preindl M, Bolognani S.Model predictive direct torque control with finite control set for PMSM drive systems, part 1: maximum torque per ampere operation[J]. IEEE Transactions on Industrial Informatics, 2013, 9(4): 1912-1921. [2] Siami M, Khaburi D A, Rodriguez J.Torque ripple reduction of predictive torque control for PMSM drives with parameter mismatch[J]. IEEE Transactions on Power Electronics, 2017, 32(9): 7160-7168. [3] 王硕, 康劲松. 一种基于自适应线性神经网络算法的永磁同步电机电流谐波提取和抑制方法[J]. 电工技术学报, 2019, 34(4): 654-663.Wang Shuo, Kang Jinsong. Harmonic extraction and suppression method of permanent magnet synchronous motor based on adaptive linear neural network[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 654-663. [4] 甘志伟, 缪冬敏, 王云冲, 等. 宽转速范围永磁同步发电机系统稳压控制及参数优化[J]. 电工技术学报, 2020, 35(8): 1624-1633.Gan Zhiwei, Miao Dongmin, Wang Yunchong, et al. Voltage stabilization control and parameters optimization for wide-speed-range permanent magnet synchronous generator systems[J]. Transactions of China Electrotechnical Society, 2020, 35(8): 1624-1633. [5] 李春艳, 王豫, 孟涛. 反凸极永磁同步电机弱磁特性分析[J]. 电工技术学报, 2019, 34(增刊2): 474-483.Li Chunyan, Wang Yu, Meng Tao. Research on flux weakening characteristics of a negative salient pole permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2019, 34(S2): 474-483. [6] 甘志伟, 缪冬敏, 王云冲, 等. 宽转速范围永磁同步发电机系统稳压控制及参数优化[J]. 电工技术学报, 2020, 35(8): 1624-1633. Gan Zhiwei, Miao Dongmin, Wang Yunchong, et al. Voltage stabilization control and parameters optimization for wide-speed-range permanent magnet synchronous generator systems[J]. Transactions of China Electrotechnical Society, 2020, 35(8): 1624-1633. [7] 徐奇伟, 孙静, 杨云, 等. 用于混合动力车的复合结构永磁电机电磁优化设计[J]. 电工技术学报, 2020, 35(增刊1): 126-135. Xu Qiwei, Sun Jing, Yang Yun, et al. Electromagnetic optimization design of compound-structure permanent-magnet motor for hybrid electric vehicle[J]. Transactions of China Electrotechnical Society, 2020, 35(S1): 126-135. [8] 王小飞, 代颖, 罗建. 基于流固耦合的车用永磁同步电机水道设计与温度场分析[J]. 电工技术学报, 2019, 34(增刊1): 22-29. Wang Xiaofei, Dai Ying, Luo Jian. Waterway design and temperature field analysis of vehicle permanent magnet synchronous motor based on fluid-solid coupling[J]. Transactions of China Electrotechnical Society, 2019, 34(S1): 22-29. [9] He Jiangbiao, Gennadi Y S, Zhang Peng, et al.A review of mitigation methods for overvoltage in long-cable-fed PWM AC drives[C]//IEEE Energy Conversion Congress & Exposition, Phoenix, AZ, USA, 2011, DOI: 10.1109/ECCE.2011.6064054. [10] 平朝春, 王艳红, 郭宏, 等. 水下大功率电机远距离变频驱动过电压问题分析[J]. 海洋工程装备与技术, 2019, 6(增刊1):160-165.Ping Zhaochun, Wang Yanhong, Guo Hong, et al. Analysis of the over-voltage problems of variable frequency drives long distance subsea high power motor system[J]. Ocean Engineering Equipment and Technology, 2019, 6(S1): 160-165. [11] A von Jouanne, P. Enjeti W Gray. The effect of long motor leads on PWM inverter fed AC motor drive systems[C]//Proceeding of 1995 IEEE Applied Power Electronics Conference & Exposition-APEC, Dallas, TX, USA, 2002, DOI: 10.1109/APEC 1995.469081. [12] Wang Zheng, Cheng Ming, Lang Yongqiang, et al.Active damping of LC resonance for interleaved CSC fed motor drives[C]//International Conference on Electrical Machines and Systems, ICEMS 2011, Beijing, China, 2011, DOI: 10.1109/ICEMS. 2011. 60 73944. [13] Ding Li, Li Yunwei, Zargari N.Discrete-time SMO sensorless control of current source converter-fed PMSM drives with low switching frequency[J]. IEEE Transactions on Industrial Electronics, 2020, DOI: 10.1109/TIE.2020.2972433 [14] 张永昌, 杨海涛. 异步电机无速度传感器模型预测控制[J]. 中国电机工程学报, 2014, 34(15): 2422-2429. Zhang Yongchang, Yang Haitao. Model predictive control for speed sensorless induction motor drive[J]. Transactions of China Electrotechnical Society, 2014, 34(15): 2422-2429. [15] Zhang Yongchang, Zhu Jianguo.Direct torque control of permanent magnet synchronous motor with reduced torque ripple and commutation frequency[J]. IEEE Transactions on Power Electronics, 2011, 26(1): 235-248. [16] Karamanakos P, Geyer T.Guidelines for the design of finite control set model predictive controllers[J]. IEEE Transactions on Power Electronics, 2020, 35(7): 7434-7450. [17] Rodriguez J, Kazmierkowski M P, Espinoza R, et al.State of the art of finite control set model predictive control in power electronics[J]. IEEE Transactions on Industrial Informatics, 2013, 9(2): 1003-1016. [18] Zhang Zhenbin, Wang Fengxiang, Sun Tongjing, et alFPGA based experimental investigation of a quasi-centralized DMPC scheme for a back-to-back converter[J]. IEEE Transactions on Power Electronics, 2015:1-1. [19] Zhang Zhenbin, Hackl C M, Kennel R.Computationally efficient DMPC for three-level NPC back-to-back converters in wind turbine systems with PMSG[J]. IEEE Transactions on Power Electronics, 2017, 32(10): 8018-8034. [20] Wang Fengxiang, Li Shihua, Mei Xuezhu, et al.Model-based predictive direct control strategies for electrical drives: an experimental evaluation of PTC and PCC methods[J]. IEEE Transactions on Industrial Informatics, 2015, 11(3): 671-681. [21] 徐艳平, 王极兵, 张保程, 等. 永磁同步电机三矢量模型预测电流控制[J]. 电工技术学报, 2018, 33(5): 980-988. Xu Yanping, Wang Jibing, Zhang Baocheng.Two-vector based model predictive current control for permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2018, 33(5): 980-988. [22] Zhang Yongchang, Yang Haitao.Two-vector-based model predictive torque control without weighting factors for induction motor drives[J]. IEEE Transactions on Power Electronics, 2016, 31(2): 1381-1390. [23] Geyer T.Model predictive direct torque control: derivation and analysis of the state-feedback control law[J]. IEEE Transactions on Industry Applications, 2011, 49(5): 2146-2157. [24] 齐昕, 周晓敏, 马祥华, 等. 感应电机预测控制改进算法[J]. 电机与控制学报, 2013, 17(3): 62-69.Qi Xin, Zhou Xiaomin, Ma Xianghua, et al. Improved predictive control algorithm for induction motors[J]. Electric Machines and Control, 2013, 17(3): 62-69. [25] 张永昌, 杨海涛. 感应电机模型预测磁链控制[J]. 中国电机工程学报, 2015, 35(3): 719-726. Zhang Yongchang, Yang Haitao.Model predictive flux control for induction motor drives[J]. Transactions of China Electrotechnical Society, 2015, 35(3): 719-726. [26] Wiseman J, Wu Bin.Active damping control of a high power PWM current source rectifier for line current THD reduction[J]. IEEE Transactions on Industrial Electronics, 2005, 52(3 ): 758-764. [27] Rivera M, Rodriguez J, Wu Bin, et al.Current control for an indirect matrix converter with filter resonance mitigation[J]. IEEE Transactions on Industrial Electronics, 2012, 59(1): 71-79. [28] Wang Zheng, Wu Bin, Xu Dewei, et al.A high-speed CSC based PMSM drive with a switching frequency of 420Hz[C]//IEEE International Symposium on Industrial Electronics, Bari, Italy, 2010, DOI: 10.1109/ ISIE.2010.5636615 |
|
|
|