|
|
A Hybrid Approach to Lithium-Ion Battery SOC Estimation Based on Recurrent Neural Network with Gated Recurrent Unit and Huber-M Robust Kalman Filter |
Li Chaoran, Xiao Fei, Fan Yaxiang, Yang Guorun, Tang Xin |
National Key Laboratory of Science and Technology on Vessel Integrated Power System Naval University of Engineering Wuhan 430033 China |
|
|
Abstract As one of the most important energy storage devices, lithium-ion (Li-ion) batteries has been widely used. Accurate and robust state of charge (SOC) estimation of lithium-ion battery is a challenging task in battery management system. In this paper, based on the recurrent neural network with gated recurrent unit (Li-ion), a new hybird model is proposed for SOC estimation. Huber-M estimation is used to improve the robustness of traditional Kalman filter and the output of the GRU-RNN is utilized as the observation of the improved Kalman filter. The performance of proposed methods is evaluated by two experimental datasets. We demonstrate the proposed method achieves satisfactory performance, as well as performs strong robustness against influence of measurement errors and outliers.
|
Received: 07 May 2019
Published: 12 May 2020
|
|
|
|
|
[1] 李建林, 马会萌, 惠东. 储能技术融合分布式可再生能源的现状及发展趋势[J]. 电工技术学报, 2016, 31(14): 1-10. Li Jianlin, Ma Huimeng, Hui Dong.Present deve- lopment condition and trends of energy storage technology in the integration of distributed renewable energy[J]. Transactions of China Electrotechnical Society, 2016, 31(14): 1-10. [2] Dunn B, Kamath H, Tarascon J M.Electrical energy storage for the grid: a battery of choices[J]. Science, 2011, 334(6058): 928-935. [3] 李保恩, 李献伟, 毋炳鑫. 基于储能SOC状态的微电网能量优化调度策略研究[J]. 电力系统保护与控制, 2017, 45(11): 108-114. Li Baoen, Li Xianwei, Wu Bingxin.Research on energy optimal dispatching strategy for microgrid based on battery SOC[J]. Power System Protection and Control, 2017, 45(11): 108-114. [4] 范兴明, 王超, 张鑫, 等. 基于增量学习相关向量机的锂离子电池SOC预测方法[J]. 电工技术学报, 2019, 34(13): 2700-2708. Fan Xingming, Wang Chao, Zhang Xin, et al.A prediction method of Li-ion batteries SOC based on incremental learning relevance vector machine[J]. Transactions of China Electrotechnical Society, 2019, 34(13): 2700-2708. [5] 谷苗, 夏超英, 田聪颖. 基于综合型卡尔曼滤波的锂离子电池荷电状态估算[J]. 电工技术学报, 2019, 34(2): 419-426. Gu Miao, Xia Chaoying, Tian Congying.Li-ion battery state of charge estimation based on com- prehensive Kalman filter[J]. Transactions of China Electrotechnical Society, 2019, 34(2): 419-426. [6] 谢长君, 费亚龙, 曾春年, 等. 基于无迹粒子滤波的车载锂离子电池状态估计[J]. 电工技术学报, 2018, 33(17): 3958-3964. Xie Changjun, Fei Yalong, Zeng Chunnian, et al.State of charge estimation of lithium-ion battery using unscented particle filter vehicle[J]. Transa- ctions of China Electrotechnical Society, 2018, 33(17): 3958-3964. [7] 刘芳, 马杰, 苏卫星, 等. 基于自适应回归扩展卡尔曼滤波的电动汽车动力电池全生命周期的荷电状态估算方法[J]. 电工技术学报, 2020, 35(4): 698-707. Liu Fang, Ma Jie, Su Weixing, et al.State of charge estimation method of electric vehicle power battery life cycle based on auto regression extended Kalman filter[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 698-707. [8] Zheng Yuejiu, Ouyang Minggao, Lu Languang, et al.Cell state-of-charge inconsistency estimation for LiFePO4 battery pack in hybrid electric vehicles using mean-difference model[J]. Applied Energy, 2013, 111: 571-580. [9] Hou Chaoyong,Yang Shuili, Hu Juan, et al.A study of SOC estimation algorithm for energy storage lithium battery pack based on information fusion technology[C]//International Conference on Power System Technology, Chengdu, 2014, DOI: 10.1109/ powercon.2014.6993645. [10] Xu Jun, Mi Chunting Chris, Cao Binggang, et al.A new method to estimate the state of charge of lithium- ion batteries based on the battery impedance model[J]. Journal of Power Sources, 2013, 233: 277-284. [11] 孙国强, 任佳琦, 成乐祥, 等. 基于分数阶阻抗模型的磷酸铁锂电池荷电状态估计[J]. 电力系统自动化, 2018, 42(23): 57-63. Sun Guoqiang, Ren Jiaqi, Cheng Lexiang, et al.State of charge estimation of LiFePO4 battery based on fractional-order impedance model[J]. Automation of Electric Power Systems, 2018, 42(23): 57-63. [12] Ye Min, Guo Hui, Cao Binggang.A model-based adaptive state of charge estimator for a lithium-ion battery using an improved adaptive particle filter[J]. Applied Energy, 2017, 190: 740-748. [13] Li Xue, Jiang Jiuchun, Zhang Caiping, et al.Effects analysis of model parameters uncertainties on battery SOC estimation using H-infinity observer[C]//IEEE 23rd International Symposium on Industrial Electro- nics, Istanbul, Turkey, 2014, DOI: 10.1109/ISIE. 2014.6864862. [14] Xiong Binyu, Zhao Jiyun, Su Yixin, et al.State of charge estimation of vanadium redox flow battery based on sliding mode observer and dynamic model including capacity fading factor[J]. IEEE Transa- ctions on Sustainable Energy, 2017, 8(4): 1658-1667. [15] 季迎旭, 王明旺. 动力电池建模与应用综述[J]. 电源技术, 2016, 40(3): 740-742. Ji Yingxu, Wang Mingwang.Review in power battery modeling and application[J]. Chinese Journal of Power Sources, 2016, 40(3): 740-742. [16] Hu J N, Hu J J, Lin H B, et al.State-of-charge estimation for battery management system using optimized support vector machine for regression[J]. Journal of Power Sources, 2014, 269: 682-693. [17] Malkhandi S.Fuzzy logic-based learning system and estimation of state-of-charge of lead-acid battery[J]. Engineering Applications of Artificial Intelligence, 2006, 19(5): 479-485. [18] Guo Yifeng, Zhao Zeshuang, Huang Limin, et al.SOC estimation of lithium battery based on improved BP neural network[C]//8th International Conference on Applied Energy, Beijing, 2017: 4153-4158. [19] 赵天意, 彭喜元, 彭宇, 等. 改进卡尔曼滤波的融合型锂离子电池SOC估计方法[J]. 仪器仪表学报, 2016, 37(7): 1441-1448. Zhao Tianyi, Peng Xiyuan, Peng Yu, et al.Lithium- ion battery SOC estimation method with fusion improved Kalman filter algorithm[J]. Chinese Journal of Scientific Instrument, 2016, 37(7): 1441-1448. [20] 林程, 张潇华, 熊瑞. 基于模糊卡尔曼滤波算法的动力电池SOC估计[J]. 电源技术, 2016, 40(9): 1836-1883. Lin Cheng, Zhang Xiaohua, Xiong Rui.State of charge estimation for power lithium-ion batteries based on fuzzy Kalman filtering algorithm[J]. Chinese Journal of Power Sources, 2016, 40(9): 1836-1883. [21] Bai Guangxing, Wang Pingfeng, Hu Chao, et al.A generic model-free approach for lithium-ion battery health management[J]. Applied Energy, 2014, 135: 247-260. [22] Wang Yujie, Zhang Chenbin, Chen Zonghai.State- of-charge estimation of lithium-ion batteries based on multiple filters method[J]. Energy Procedia, 2015, 75: 2635-2640. [23] Sak H, Senior A, Rao K, et al.Learning acoustic frame labeling for speech recognition with recurrent neural networks[C]//IEEE International Conference on Acoustics, Speech and Signal Processing, Brisbane, 2015, DOI: 10.1109/ICASSP.2015.7178778. [24] Pigou L, Aäron V D O, Dieleman S, et al. Beyond temporal pooling: Recurrence and temporal convo- lutions for gesture recognition in video[J]. Inter- national Journal of Computer Vision, 2015: 1-10. [25] Xu Chang, Wang Gang, Liu Xiaoguang, et al.Health status assessment and failure prediction for hard drives with recurrent neural networks[J]. IEEE Transactions on Computers, 2016, 65(11): 3502-3508. [26] Marcella C, Lorenzo B, Giuseppe S, et al.Predicting human eye fixations via an LSTM-based saliency attentive model[J]. IEEE Transactions on Image Processing, 2018, 27(10): 5142-5154. [27] Chung J, Gulcehre C, Cho K, et al.Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. ArXiv, 2014: 1412.3555. [28] Chemali E, Kollmeyer P J, Preindl M, et al.State- of-charge estimation of Li-ion batteries using deep neural networks: a machine learning approach[J]. Journal of Power Sources, 2018, 400: 242-255. [29] Li Chaoran, Xiao Fi, Fan Yaxiang.An approach to state of charge estimation of lithium-ion batteries based on recurrent neural networks with gated recurrent unit[J]. Energies, 2019, 12(9): 1592. |
|
|
|