|
|
A Novel High-Frequency Pulse Generator Based on Bipolar and Marx Topologies |
Wang Xiaoyu1,2, Dong Shoulong1,3, Ma Jianhao1, Yu Liang1, Yao Chenguo1 |
1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400030 China; 2. State Grid Hebei Electric Power Co. Ltd Cangzhou Power Supply Branch Cangzhou 061000 China; 3. Electrical Engineering Postdoctoral Mobile Station Chongqing University Chongqing 400030 China |
|
|
Abstract With the in-depth application of pulse power technology in wide range of biomedicine, food processing, electromagnetic forming, plasma generation, etc., it has posed new requirements to pulse generators such as high-volt high frequency, bipolar, and all solid state. Therefore, in this paper, a novel bipolar high-volt pulse generator circuit topology is proposed. Theoretical analysis, simulation and experimental results show that it combines the advantages of solid-state Marx and bridge circuits, which can realize high voltage output through simple stacking of modules, flexible output adjustment for polarity and pulse width by sequential logic control of the switch, and high repetition rate with long lifetime. The experimental prototype has been developed with characteristic parameters as follows: the output voltage amplitude is ±5kV, the repetition rate is 2.5MHz in the pulse train, and the pulse width is 200ns~10μs.
|
Received: 19 November 2018
Published: 28 February 2020
|
|
|
|
|
[1] 郭飞, 李成祥, 唐贤伦, 等. 冲激辐射天线实现皮秒脉冲电场在人体大脑模型中聚焦的研究[J]. 电工技术学报, 2016, 31(3): 195-202. Guo Fei, Li Chengxiang, Tang Xianlun, et al.Focusing of picosecond pulsed electric fields in human brain model with impulse radiating antenna[J]. Transactions of China Electrotechnical Society, 2016, 31(3): 195-202. [2] Gad A, Jayaram S H, Pritzker M.Performance of electrode materials during food processing by pulsed electric fields[J]. IEEE Transactions on Plasma Science, 2014, 42(10): 3161-3166. [3] Zhou Yan, Tan Jianwen, Yao Chenguo, et al.Finite-element simulation and experiments on plastic heating in the process of electromagnetic pulse forming[J]. IEEE Transactions on Plasma Science, 2018, 46(10): 3427-3437. [4] 宋艳芳, 张宏阁. 电磁脉冲焊接技术研究现状及发展趋势[J]. 热加工工艺, 2015, 44(11): 13-17. Song Yanfang, Zhang Hongge.Research status and development trends of electromagnetic pulse welding technique[J]. Hot Working Technology, 2015, 44(11): 13-17. [5] 董守龙, 姚陈果, 杨楠, 等. 基于Marx电路的全固态纳秒脉冲等离子体射流装置的研制[J]. 电工技术学报, 2016, 31(24): 35-44. Dong Shoulong, Yao Chenguo, Yang Nan, et al.The development of solid-state nanosecond pulsed plasma jet apparatus based on Marx structure[J]. Transa- ctions of China Electrotechnical Society, 2016, 31(24): 35-44. [6] 米彦, 姚陈果, 李成祥, 等. 基于场-路复合模型的细胞内外膜跨膜电位时频特性[J]. 电工技术学报, 2011, 26(2): 14-20. Mi Yan, Yao Chenguo, Li Chengxiang, et al.Time- frequency characteristics of transmembrane potentials on cellular inner and outer membranes based on dielectric-circuit compound model[J]. Transactions of China Electrotechnical Society, 2011, 26(2): 14-20. [7] Kingham T P, Karkar A M, D'Angelica M I, et al. Ablation of perivascular hepatic malignant tumors with irreversible electroporation[J]. Journal of the American College of Surgeons, 2012, 215(3): 379-387. [8] Cheung W, Kavnoudias H, Roberts S, et al.Irreversible electroporation for unresecTab. hepato- cellular carcinoma: initial experience and review of safety and outcomes[J]. Technology in Cancer Research & Treatment, 2013, 12(3): 233-241. [9] 姚陈果, 赵亚军, 董守龙, 等. 基于阻抗谱的脉冲电场诱导兔肝脏组织不可逆电穿孔程度评估新方法的实验研究[J]. 高电压技术, 2017, 43(8): 2454-2463. Yao Chenguo, Zhao Yajun, Dong Shoulong, et al.Experimental study on a novel method for evaluating the irreversible electroporation degree on rabbit liver tissue induced by pulsed electric field based on impedance spectrum[J]. High Voltage Engineering, 2017, 43(8): 2454-2463. [10] Yao Chenguo, Dong Shoulong, Zhao Yajun, et al.Bipolar microsecond pulses and insulated needle electrodes for reducing muscle contractions during irreversible electroporation[J]. IEEE Transactions on Bio-medical Engineering, 2017, 64(12): 2924-2937. [11] 董守龙. 高频双极性微秒脉冲电场不可逆电穿孔消融肿瘤的实验与机理研究[D]. 重庆: 重庆大学, 2017. [12] 米彦, 张晏源, 储贻道, 等. 基于非平衡Blumlein型多层微带传输线的高压纳秒脉冲发生器[J]. 电工技术学报, 2015, 30(11): 100-109. Mi Yan, Zhang Yanyuan, Chu Yidao, et al.High voltage nanosecond pulse generator based on non-balanced blumlein type multilayered micro strip transmission line[J]. Transactions of China Electro- technical Society, 2015, 30(11): 100-109. [13] Redondo L M, Kandratsyeu A, Barnes M J.Marx generator prototype for kicker magnets based on SiC MOSFETs[J]. IEEE Transactions on Plasma Science, 2018, 46(10): 3334-3339. [14] Jiang W, Sugiyama H, Tokuchi A.Pulsed power generation by solid-state LTD[J]. IEEE Transactions on Plasma Science, 2014, 42(11): 3603-3608. [15] Elserougi A A, Abdelsalam I, Massoud A M, et al.A full-bridge submodule-based modular unipolar/ bipolar high-voltage pulse generator with sequential charging of capacitors[J]. IEEE Transactions on Plasma Science, 2016, 45(1): 91-99. [16] Kim J H, Min B D, Shenderey S, et al.High voltage Marx generator implementation using IGBT stacks[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2007, 14(4): 931-936. [17] Rocha L L, Silva J F, Redondo L M.Seven-level unipolar/bipolar pulsed power generator[J]. IEEE Transactions on Plasma Science, 2016, 44(10): 2060-2064. [18] Sakamoto T, Akiyama H.Solid-state dual Marx generator with a short pulse width[J]. IEEE Transactions on Plasma Science, 2013, 41(10): 2649-2653. |
|
|
|