|
|
Study on the Economic Analysis Method of Advanced Adiabatic Compressed Air Energy Storage in Integrated Energy System |
Yin Binxin1, Miao Shihong1, Li Yaowang1, Zhang Songyan1, Wang Jihong1,2 |
1. State Key Laboratory of Advanced Electromagnetic Engineering and Technology Hubei Electric Power Security and High Efficiency Key Laboratory School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan 430074 China; 2. School of Engineering Warwick University Coventry CV4 8UW UK |
|
|
Abstract Advanced adiabatic compressed air energy storage (AA-CAES) is a large-capacity energy storage technology with the advantages of low cost and no demand of fuel, as well as the ability of cooling-heating-power storage and supply. In integrated energy system (IES), AA-CAES can exert its unique advantages and improve the energy efficiency of IES further. Economic analyses of AA-CAES based on the operation of IES can reflect the economic benefit of AA-CAES power station, and it is of great significance to the development and application of AA-CAES technology. A life cycle economic assessment model is established for IES in the situation that auxiliary equipment, such as AA-CAES power plant, battery and power-to-gas device, participate in IES operation. In order to reflect the operation situation and cost of IES, an optimal operation model of large scale IES is established, considering the coordinated interaction of major equipment. Based on the model, the optimal operation results of IES with different auxiliary equipment, such as AA-CAES power plant, battery or power-to-gas device, are obtained. Finally, the economic performance of AA-CAES power station in IES is analyzed and compared with and other auxiliary equipment through life cycle cost of the auxiliary equipment and the operation cost of IES.
|
Received: 27 August 2019
|
|
|
|
|
[1] 贾宏杰, 穆云飞, 余晓丹. 对我国综合能源系统发展的思考[J]. 电力建设, 2015, 36(1): 16-25. Jia Hongjie, Mu Yunfei, Yu Xiaodan.Thought about the integrated energy system in China[J]. Electric Power Construction, 2015, 36(1): 16-25. [2] 韩佶, 苗世洪, 李超, 等. 计及相关性的电-气-热综合能源系统概率最优能量流[J]. 电工技术学报, 2019, 34(5): 1055-1067. Han Ji, Miao Shihong, Li Chao, et al.Probabilistic optimal energy flow of electricity-gas-heat integrated energy system considering correlation[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 1055-1067. [3] 张义志, 王小君, 和敬涵, 等. 考虑供热系统建模的综合能源系统最优能流计算方法[J]. 电工技术学报, 2019, 34(3): 562-570. Zhang Yizhi, Wang Xiaojun, He Jinghan, et al.Optimal energy flow calculation method of integrated energy system considering thermal system modeling[J]. Transactions of China Electrotechnical Society, 2019, 34(3): 562-570. [4] 尹斌鑫, 苗世洪, 李姚旺, 等. 考虑变寿命特性的先进绝热压缩空气储能电站容量规划模型[J]. 电工技术学报, 2020, 35(3): 612-622. Yin Binxin, Miao Shihong, Li Yaowang, et al.A capacity planning model of advanced adiabatic compressed air energy storage plant considering lifetime varying characteristic[J]. Transactions of China Electrotechnical Society, 2020, 35(3): 612-622. [5] 张远, 杨科, 李雪梅, 等. 基于先进绝热压缩空气储能的冷热电联产系统[J]. 工程热物理学报, 2013, 34(11): 1991-1996. Zhang Yuan, Yang Ke, Li Xuemei, et al.A combined cooling, heating and power (CCHP) system based on advanced adiabatic compressed air energy storage (AA-CAES) technology[J]. Journal of Engineering Thermophysics, 2013, 34(11): 1991-1995. [6] Liu Jinlong, Wang Jianhua.A comparative research of two adiabatic compressed air energy storage systems[J]. Energy Conversion & Management, 2016, 108(108): 566-578. [7] Venkataramani G, Parankusam P, Ramalingam V, et al.A review on compressed air energy storage-a pathway for smart grid and polygeneration[J]. Renewable and Sustainable energy reviews, 2016, 62: 895-907. [8] 薛小代, 梅生伟, 林其友, 等. 面向能源互联网的非补燃压缩空气储能及应用前景初探[J]. 电网技术, 2016, 40(1): 164-171. Xue Xiaodai, Mei Shengwei, Lin Qiyou, et al.Energy internet oriented non-supplementary fired compressed air energy storage and prospective of application[J]. Power System Technology, 2016, 40(1): 164-171. [9] 刘畅, 徐玉杰, 胡珊, 等. 压缩空气储能电站技术经济性分析[J].储能科学与技术 , 2015 , 4(2) :158-168. Liu Chang, Xu Yujie, Hu Shan, et al.Techno- economic analysis of compressed air energy storage power plant[J]. Energy Storage Science and Technology, 2015, 4(2): 158-168. [10] Das T, Krishnan V, McCalley J D. Assessing the benefits and economics of bulk energy storage technologies in the power grid[J]. Applied Energy, 2015, 139: 104-118. [11] He Xian, Lecomte R, Nekrassov A, et al.Compressed air energy storage multi-stream value assessment on the french energy market[C]//IEEE Trondheim PES Power Tech, NTNU, Tondheim, Nonway, 2011: 1-6. [12] Drury E, Denholm P, Sioshansi R.The value of compressed air energy storage in energy and reserve markets[J]. Energy, 2011, 36(8):4959-4973. [13] Ding J, Xu Y, Chen H, et al.Value and economic estimation model for grid-scale energy storage in monopoly power markets[J]. Applied energy, 2019, 240: 986-1002. [14] 严毅, 张承慧, 李珂, 等. 含压缩空气储能的冷热电联供微网优化运行策略[J]. 中国电机工程学报, 2018, 38(23): 6924-6936, 7126. Yan Yi, Zhang Chenghui, Li Ke, et al.The optimal operation strategy for hybrid combined cooling, heating and power microgrid with compressed air energy storage[J]. Proceedings of the CSEE, 2018, 38(23): 6924-6936, 7126. [15] 王之龙, 于东立, 门向阳, 等. 含压缩空气储能的能源互联微网型系统优化配置[J]. 电力需求侧管理, 2018, 20(6): 40-45. Wang Zhilong, Yu Dongli, Men Xiangyang, et al.Optimal configuration of energy interconnection microgrid system with compressed air energy storage[J]. Power Demand Side Management, 2018, 20(6): 40-45. [16] Wang Xusheng, Yang Cheng, Huang Manman, et al.Multi-objective optimization of a gas turbine-based CCHP combined with solar and compressed air energy storage system[J]. Energy Conversion and Management, 2018, 164: 93-101. [17] Szablowski L, Krawczyk P, Badyda K, et al.Energy and exergy analysis of adiabatic compressed air energy storage system[J]. Energy, 2017, 138: 12-18. [18] Liu Hui, He Qing, Saeed S B.Thermodynamic analysis of a compressed air energy storage system through advanced exergetic analysis[J]. Journal of Renewable and Sustainable Energy, 2016, 8(3): 034101. [19] Bagdanavicius A, Jenkins N.Exergy and exergoeconomic analysis of a compressed air energy storage combined with a district energy system[J]. Energy Conversion and Management, 2014, 77: 432-440. [20] Kim Y M, Favrat D.Energy and exergy analysis of a micro-compressed air energy storage and air cycle heating and cooling system[J]. Energy, 2010, 35(1): 213-220. [21] Mohammadi A, Mehrpooya M.Exergy analysis and optimization of an integrated micro gas turbine, compressed air energy storage and solar dish collector process[J]. Journal of Cleaner Production, 2016, 139: 372-383. [22] 陈海生, 纪律. 压缩空气储能技术发展现状及前景[EB/OL].2019-04-10. https://new.qq.com/omn/ 20190816/20190816A03J4300. [23] 黄际元, 李欣然, 常敏, 等. 考虑储能电池参与一次调频技术经济模型的容量配置方法[J]. 电工技术学报, 2017, 32(21): 116-125. Huang Jiyuan, Li Xinran, Chang Min, et al.Capacity allocation of BESS in primary frequency regulation considering its technical-economic model[J]. Transactions of China Electrotechnical Society, 2017, 32(21): 112-121. [24] 张新敬, 陈海生, 刘金超, 等. 压缩空气储能技术研究进展[J]. 储能科学与技术, 2012, 1(1): 26-40. Zhang Xinjing, Chen Haisheng, Liu Jinchao, et al.Research progress in compressed air energy storage system: a review[J]. Energy Storage Science and Technology, 2012, 1(1): 26-40. [25] 薛金花, 叶季蕾, 陶琼, 等. 采用全寿命周期成本模型的用户侧电池储能经济可行性研究[J]. 电网技术, 2016, 40(8): 2471-2476. Xue Jinhua, Ye Jilei, Tao Qiong, et al.Economic feasibility of user-side battery energy storage based on whole-life-cycle cost model[J]. Power System Technology, 2016, 40(8): 2471-2476. [26] 李姚旺, 苗世洪, 尹斌鑫, 等. 考虑先进绝热压缩空气储能电站备用特性的电力系统优化调度策略[J]. 中国电机工程学报, 2018, 38(18): 1-14. Li Yaowang, Miao Shihong, Yin Binxin, et al.Power system optimal scheduling strategy considering reserve characteristics of advanced adiabatic compressed air energy storage plant[J]. Proceeding of the CSEE, 2018, 38(18): 1-14. [27] 张远. 风电与先进绝热压缩空气储能技术的系统集成与仿真研究[D]. 北京: 中国科学院研究生院, 2014. [28] 李姚旺, 苗世洪, 尹斌鑫, 等. 含先进绝热压缩空气储能电站的电力系统实时调度模型[J]. 电工技术学报, 2019, 34(2): 387-397. Li Yaowang, Miao Shihong, Yin Binxin, et al.Real-time dispatch model for power system with advanced adiabatic compressed air energy storage[J]. Transactions of China Electrotechnical Society, 2019, 34(2): 387-397. [29] Zhang Jun, Li Kejun, Wang Mingqiang, et al.A bi-level program for the planning of an islanded microgrid including CAES[J]. IEEE Transactions on Industry Applications, 2016, 52(4): 2768-2777. [30] Anand H, Narang N, Dhillon J S.Unit commitment considering dual-mode combined heat and power generating units using integrated optimization technique[J]. Energy Conversion and Management, 2018, 171: 984-1001. [31] 张儒峰, 姜涛, 李国庆, 等. 考虑电转气消纳风电的电-气综合能源系统双层优化调度[J]. 中国电机工程学报, 2018, 38(19): 5668-5678, 5924. Zhang Rufeng, Jiang Tao, Li Guoqing, et al.Bi-level optimization dispatch of integrated electricity-natural gas systems considering P2G for wind power accommodation[J]. Proceeding of the CSEE, 2018, 38(19): 5668-5678, 5924. [32] 罗纯坚, 李姚旺, 许汉平, 等. 需求响应不确定性对日前优化调度的影响分析[J]. 电力系统自动化, 2017, 41(5): 22-29. Luo Chunjian, Li Yaowang, Xu Hanping, et al.Influence of demand response uncertainty on day-ahead optimization dispatching[J]. Automation of Electric Power Systems, 2017, 41(5): 22-29. [33] 汤杰, 李欣然, 黄际元, 等. 以净效益最大为目标的储能电池参与二次调频的容量配置方法[J]. 电工技术学报, 2019, 34(5): 963-972. Tang Jie, Li Xinran, Huang Jiyuan, et al.Capacity allocation of BESS in secondary frequency regulation with the goal of maximum net benefit[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 963-972. [34] Foley A, Lobera I D.Impacts of compressed air energy storage plant on an electricity market with a large renewable energy portfolio[J]. Energy, 2013, 57: 85-94. [35] 田崇翼, 张承慧, 李珂, 等. 含压缩空气储能的微网复合储能技术及其成本分析[J]. 电力系统自动化, 2015, 39(10): 36-41. Tian Chongyi, Zhang Chenghui, Li Ke, et al.Composite energy storage technology with compressed air energy storage in microgrid and its cost analysis[J]. Automation of Electric Power Systems, 2015, 39(10): 36-41. [36] 黄国日, 刘伟佳, 文福拴, 等. 具有电转气装置的电-气混联综合能源系统的协同规划[J]. 电力建设, 2016, 37(9): 1-13. Huang Guori, Liu Weijia, Wen Fushuan, et al.Collaborative planning of integrated electricity and natural gas energy systems with power-to-gas stations[J]. Electric Power Construction, 2016, 37(9): 1-13. [37] Yan Yi, Zhang Chenghui, Li Ke, et al.An integrated design for hybrid combined cooling, heating and power system with compressed air energy storage[J]. Applied Energy, 2018, 210: 1151-1166. [38] 傅温. 建筑工程常用术语详解[M]. 北京: 中国电力出版社, 2014. [39] 韩晓娟, 程成, 籍天明, 等. 计及电池使用寿命的混合储能系统容量优化模型[J]. 中国电机工程学报, 2013, 33(34): 91-97. Han Xiaojuan, Cheng Cheng, Ji Tianming, et al.Capacity optimal modeling of hybrid energy storage systems considering battery life[J]. Proceedings of the CSEE, 2013, 33(34): 91-97. |
|
|
|