|
|
Micromagnetic Analysis of External and Internal Impact Factors on kHz Level Saturation Magnetization for Nanocrystalline Alloy |
Han Zhiyun1, Zou Liang1, Wu Jiale2, Zhang Li1, Zhao Tong1 |
1. School of Electrical Engineering Shandong University Jinan 250061 China; 2. Guangxi Power Grid Co. Ltd Nanning Power Supply Bureau Nanning 530029 China |
|
|
Abstract The mathematical modeling problem of nanocrystalline alloy under kHz level complex high frequency saturation condition is becoming more and more serious due to the lack of fundamental research. In this paper, a three-dimensional spherical mesoscopic model of nanocrystalline alloy (Fe73.5Cu1Nb3Si13.5B9) was established by micromagnetic simulation software OOMMF. The calculated static magnetic characteristic parameters of the model are in good agreement with the experimental results, which validates the correctness of the model. The angular velocity of magnetic moment rotation ω was utilized to indicate the precession of magnetic moment in the process of saturation magnetization. Dynamic saturation and static saturation were both defined quantitatively. Then, the influence mechanism of different changes of external factors (accessional DC bias magnetic field Bd and magnetization frequency f ) and internal factor (grain size d) on saturation magnetization process was investigated. The results indicate that the influence of external and internal factors is different. For external factors, under dynamic saturation conditions, increasing Bd or f both are the effective measures for accelerating magnetic moment rotation, and the effect of increasing Bd is more obvious; under static saturation conditions, increasing Bd or f can no longer accelerate the rotation of the magnetic moment because the nanocrystalline alloy has reached the maximum magnetization speed at that moment. For internal factor, whether under dynamic or static saturation conditions, reducing the grain size will increase the angular moment of magnetic moment rotation of the nanocrystalline alloy, which can accelerate the magnetization process of the nanocrystalline alloy material.
|
Received: 01 July 2018
Published: 05 May 2019
|
|
|
|
|
[1] 杨庆新, 李永建. 先进电工磁性材料特性与应用发展研究综述[J]. 电工技术学报, 2016, 31(20): 1-12. Yang Qingxin, Li Yongjian.Characteristics and developments of advanced magnetic materials in electrical engineering: a review[J]. Transactions of China Electrotechnical Society, 2016, 31(20): 1-12. [2] Herzer G.Modern soft magnets: amorphous and nanocrystalline materials[J]. Acta Materialia, 2013, 61(3): 718-734. [3] Füzer J, Dobák S, Kollár P.Magnetization dynamics of FeCuNbSiB soft magnetic ribbons and derived powder cores[J]. Journal of Alloys and Compounds, 2015, 628: 335-342. [4] Chazal H, Kedous-Lebouc A, Waeckerle T.Characterization and modeling of high-frequency behavior of nanocrystalline alloys[J]. Journal of Magnetism and Magnetic Materials, 2006, 304(2): e798-e800. [5] Crisan O, Le Breton J M, Filoti G. Nanocry- stallization of soft magnetic finemet-type amorphous ribbons[J]. Sensors and Actuators A: Physical, 2003, 106(1-3): 246-250. [6] Xu H, He K Y, Qiu Y Q, et al.Intense milling nanocrystalline Fe73.5Cu1Nb3Si13.5B9: a soft magnetic material in powdered form[J]. Materials Science and Engineering: A, 2000, 286(1): 197-200. [7] Bottauscio O, Manzin A.Comparison of multiscale models for eddy current computation in granular magnetic materials[J]. Journal of Computational Physics, 2013, 253: 1-17. [8] Ziębowicz B, Szewieczek D, Dobrzański L A.Magnetic properties and structure of nanocomposites of powder Fe73.5Cu1Nb3Si13.5B9 alloy—polymer type[J]. Journal of Materials Processing Technology, 2004, 157: 776-780. [9] Saiden N M, Schrefl T, Davies H A, et al.Micro- magnetic finite element simulation of nanocrystalline α-Fe/Nd2Fe14B/Fe3B magnets[J]. Journal of Magnetism and Magnetic Materials, 2014, 365: 45-50. [10] 杨全民. 介观结构对Fe基纳米晶合金磁性能影响的理论研究[D]. 西安: 西安建筑科技大学, 2008. [11] 杨全民, 王玲玲. 频率对纳米晶软磁合金磁性能影响的理论解释[J]. 物理学报, 2005, 54(9): 4256-4262. Yang Quanmin, Wang Lingling.Influence of frequency on magnetic properties of Fe73.5Cu1Nb3Si13.5B9 and the explanation[J]. Acta Physica Sinica, 2005, 54(9): 4256-4262. [12] Liu Yi, Han Yibo, Lin Fuchang, et al.Performance evaluation of Fe-based nanocrystalline cores with high and low residual flux[J]. IEEE Transactions on Plasma Science, 2014, 42(8): 2079-2085. [13] 刘毅, 韩毅博, 刘思维, 等. 不同剩磁铁基纳米晶磁芯脉冲磁化特性[J]. 中国电机工程学报, 2016, 36(2): 577-584. Liu Yi, Han Yibo, Liu Siwei, et al.Pulse magne- rization characteristics of Fe-based nanocrystalline cores with different remanences[J]. Proceedings of the CSEE, 2016, 36(2): 577-584. [14] Zou L, Liu T, Zhao T, et al.Micromagnetic simulation of high frequency saturation characteristics for nanocrystalline core[C]//15th International Con- ference on Nanotechnology (IEEE-NANO), New York, 2015: 1045-1048. [15] Wu Jiale, Zou Liang, Liu Han, et al.Micromagnetic simulation of high frequency magnetic characteristics for Fe-based nanocrystalline alloy[C]//IEEE Inter- national Conference on High Voltage Engineering and Application (ICHVE), Chengdu, 2016: 1-4. [16] Zhao G P, Wang Xunli.Nucleation, pinning, and coercivity in magnetic nanosystems: an analytical micromagnetic approach[J]. Physical Review B, 2006, 74(1): 012409. [17] Dobák S, Füzer J, Kollár P, et al.Interplay of domain walls and magnetization rotation on dynamic magnetization process in iron/polymer-matrix soft magnetic composites[J]. Journal of Magnetism and Magnetic Materials, 2017, 426: 320-327. [18] Zhao G P, Yang C, Xian C W, et al.Analytical determination of nucleation field and magnetic reversal modes in exchange-coupled nanolayers[J]. Modern Physics Letters B, 2009, 23(25): 2955-2961. [19] 陆秋菊. 基于微磁学的非晶丝磁化特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. [20] 卢晓丰. 磁纳米结构中的磁矩动力学研究[D]. 苏州: 苏州大学, 2015. [21] 戴道生. 物质磁性基础[M]. 北京: 北京大学出版社, 2016. [22] Lu Wei, Yan Biao.Research of Fe-based nanocrystal- line soft magnetic materials[J]. Journal of Materials Science & Engineering, 2004, 22(3): 461-465. [23] 柴国志. 异质结构软磁材料的高频磁特性研究[D]. 兰州: 兰州大学, 2012. [24] Herzer G.Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets[J]. IEEE Transactions on Magnetics, 1990, 26(5): 1397-1402. [25] Helmut K, Manfred F.Micromagnetism and the microstructure of ferromagnetic solids[M]. Cambidge: Cambridge University, 2009: 320-400. [26] Liu Yapi, Yi Yide, Shao Wei, et al.Microstructure and magnetic properties of soft magnetic powder cores of amorphous and nanocrystalline alloys[J]. Journal of Magnetism and Magnetic Materials, 2013, 330: 119-133. [27] Herzer G.Grain structure and magnetism of nanocrystalline ferromagnets[J]. IEEE Transactions on Magnetics, 1989, 25(5): 3327-3329. |
|
|
|