|
|
Detection Method of Power Quality Disturbances Based on Double Resolution S Transform and Learning Vector Quantization Neural Network |
Li Jianmin1, Lin Haijun1, Liang Chengbin2, Teng Zhaosheng2, Cheng Da3 |
1. College of Engineering and Design Hunan Normal University Changsha 410081 China; 2. College of Electrical and Information Engineering Hunan University Changsha 410082 China; 3. China Electric Power Research Institute Beijing 100192 China |
|
|
Abstract As the nonlinear loads and impact loads in power grid increase, the power quality problems are becoming more and more serious. Accurate and fast detection of power quality disturbance signals has great significance for finding the cause of power quality problems and improving the power quality. Therefore, an algorithm for recognizing power quality disturbance signals is proposed in this paper based on double resolution S-transform and learning vector quantization (LVQ) neural network. Firstly, double resolution S-transform is used to extract the feature vectors of disturbance signals accurately and quickly. Then, the obtained feature vectors of disturbance signals are normalized and the trained LVQ neural network is used to classify and identify the disturbance signals. The simulation and actual test results show that the proposed algorithm based on double resolution S-transform and LVQ neural network has fast training speed, high classification accuracy and is suitable for embedded implementation.
|
Received: 28 May 2018
Published: 02 September 2019
|
|
|
|
|
[1] 刘嫣, 汤伟, 刘宝泉. 基于压缩感知的电能质量扰动数据稀疏分析与改进重构算法[J]. 电工技术学报, 2018, 33(15): 3461-3470. Liu Yan, Tang Wei, Liu Baoquan.Data sparse analysis and improved reconstruction algorithm of power quality disturbance based on compressed sensing[J]. Transactions of China Electrotechnical Society, 2018, 33(15): 3461-3470. [2] 彭卉, 邹舒, 付永生, 等. 冲击负荷接入电网的电能质量分析与治理方案研究[J]. 电力系统保护与控制, 2014, 42(1): 54-61. Peng Hui, Zou Shu, Fu Yongsheng, et al.Research of the power quality problem and treatment scheme for impact loads connected into Chongqing power system[J]. Power System Protection and Control, 2014, 42(1): 54-61. [3] 温和, 金冉, 蒙娟, 等. 电压不平衡度的加窗FFT快速测量方法[J]. 电工技术学报, 2017, 32(16): 275-283. Wen He, Jin Ran, Meng Juan, et al.Fast measurement method of voltage unbalance factor based on windowed FFT[J]. Transactions of China Electro- technical Society, 2017, 32(16): 275-283. [4] 王丽霞, 何正友, 赵静. 一种基于线性时频分布和二进制阈值特征矩阵的电能质量分类方法[J]. 电工技术学报, 2011, 26(4): 185-191. Wang Lixia, He Zhengyou, Zhao Jing.Power quality disturbance classification based on linear time- frequency distribution and binary threshold feature matrix[J]. Transactions of China Electrotechnical Society, 2011, 26(4): 185-191. [5] 范小龙, 谢维成, 蒋文波, 等. 一种平稳小波变换改进阈值函数的电能质量扰动信号去噪方法[J]. 电工技术学报, 2016, 31(14): 219-226. Fan Xiaolong, Xie Weicheng, Jiang Wenbo, et al.An improved threshold function method for power quality disturbance signal de-noising based on stationary wavelet transform[J]. Transactions of China Electrotechnical Society, 2016, 31(14): 219-226. [6] 田振果, 傅成华, 吴浩, 等. 基于HHT的电能质量扰动定位与分类[J]. 电力系统保护与控制, 2015, 43(16): 36-42. Tian Zhenguo, Fu Chenghua, Wu Hao, et al.Power quality disturbance for location and classification based on HHT[J]. Power System Protection and Control, 2015, 43(16): 36-42. [7] 易吉良, 彭建春, 谭会生. S变换在电能质量扰动分析中的应用综述[J]. 电力系统保护与控制, 2011, 39(3): 141-147. Yi Jiliang, Peng Jianchun, Tan Huisheng.A summary of S-transform applied to power quality disturbances analysis[J]. Power System Protection and Control. 2011,39(3): 141-147. [8] Barros J, Diego R I.A new method for measurement of harmonic groups in power systems using wavelet analysis in the IEC standard framework[J]. Electric Power Systems Research, 2006, 76(4): 200-208. [9] Heydt G T, Fjeld P S, Liu C C, et al.Applications of the windowed FFT to electric power quality assessment[J]. IEEE Transactions on Power Delivery, 1999, 14(4): 1411-1416. [10] 李庚银, 罗艳, 周明, 等. 基于数学形态学和网格分形的电能质量扰动检测及定位[J]. 中国电机工程学报, 2006, 26(3): 25-30. Li Gengyin, Luo Yan, Zhou Ming, et al.Power quality disturbance detection and location based on mathematical morphology and grille fractal[J]. Proceedings of the CSEE, 2006, 26(3): 25-30. [11] Lin T, Domijan A.On power quality indices and real time measurement[J]. IEEE Transactions on Power Delivery, 2005, 20(4): 2552-2562. [12] 杨洪耕, 刘守亮, 肖先勇. 利用S变换时频等值线图与幅值包络向量实现电压凹陷的分类[J]. 电工技术学报, 2006, 21(8): 75-79. Yang Honggeng, Liu Shouliang, Xiao Xianyong.Classification of voltage dips using time-frequency contour and amplitude envelope vectors by S-transform[J]. Transactions of China Electro- technical Society, 2006, 21(8): 75-79. [13] 郭俊文, 李开成, 何顺帆, 等. 基于改进不完全S变换与决策树的实时电能质量扰动分类[J]. 电力系统保护与控制, 2013, 41(22): 103-110. Guo Junwen, Li Kaicheng, He Shunfan, et al.A real time power quality disturbance classification based on improved incomplete S-transform and decision tree[J]. Power System Protection and Control, 2013, 41(22): 103-110. [14] 秦业, 袁海文, 袁海斌, 等. 基于优化最小二乘支持向量机的电能质量扰动分类[J]. 电工技术学报, 2012, 27(8): 209-214. Qin Ye, Yuan Haiwen, Yuan Haibing, et al.Classifi- caiton of power quality disturbance based on optimized least squares support vector machine[J]. Transactions of China Electrotechnical Society, 2012, 27(8): 209-214. [15] 管春, 周雒维, 卢伟国. 基于多标签RBF神经网络的电能质量复合扰动分类方法[J]. 电工技术学报, 2011, 26(8): 198-204. Guan Chun, Zhou Luowei, Lu Weiguo.Recognition of multiple power quality disturbances using multi-label RBF neural networks[J]. Transactions of China Electrotechnical Society, 2011, 26(8): 198-204. [16] Eriş, ti H, Demir Y. Automatic classification of power quality events and disturbances using wavelet transform and support vector machines[J]. IET Generation, Transmission & Distribution, 2012, 6(10): 968. [17] 刘文轩, 严凤, 田霖, 等. 基于LVQ神经网络的配电网故障定位方法[J]. 电力系统保护与控制, 2012, 40(5): 90-95. Liu Wenxuan, Yan Feng, Tian Lin, et al.LVQ neural network approach for fault location of distribution network[J]. Power System Protection and Control. 2012, 40(5): 90-95. [18] Stockwell R G, Mansinha L, Lowe R P.Localization of the complex spectrum: the S transform[J]. IEEE Transactions on Signal Processing, 1996, 44(4): 998-1001. [19] Pinnegar C R, Mansinha L.Time-local spectral analysis for non-stationary time series: The S-transform for noisy signals[J]. Fluctuation and Noise Letters, 2003, 3(3): L357-L364 [20] IEEE 1459-2010 Standard Definition for the Measurement of Electric Power Quantities Under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions[S]. 2010. [21] Youssef A M, Abdel-Galil T K, El-Saadany E F, et al. Disturbance classification utilizing dynamic time warping classifier[J]. IEEE Transactions on Power Delivery, 2004,19(1): 272-278. [22] Alshahrani S, Abbod M, Alamri B, et al.Evaluation and classification of power quality disturbances based on discrete Wavelet Transform and artificial neural networks[C]//2015 50th International Univer- sities Power Engineering Conference (UPEC), Stoke, 2015: 1-5. [23] Chen Z M, Li M S, Ji T Y, et al.Detection and classification of power quality disturbances in time domain using probabilistic neural network[C]//2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, 2016: 1277-1282. [24] Manikandan M S, Samantaray S R, Kamwa I.Detection and classification of power quality distur- bances using sparse signal decomposition on hybrid dictionaries[J]. IEEE Transactions on Instrumentation & Measurement, 2014, 64(1): 27-38. |
|
|
|