|
|
Analysis of the Phenomena and Characteristics of Gas-Solid Insulation SurfaceDischarge under High Frequency Sinusoidal Electrical Stress |
Zhang Kaifang1, Zhang Li1, Li Zongwei2, Zhao Tong1, Zou Liang1 |
1. School of Electrical Engineering Shandong University Ji’nan 250061 China; 2. Sconomic & Technology Research Institute State Grid Shandong Electric Power Company Ji’nan 250021 China; |
|
|
Abstract Surface discharge in gas-solid insulation is a common defect in high frequency transformer. In order to study the phenomenon and characteristics of gas-solid insulation surface discharge under highfrequency sinusoidal electrical stress, a needle-plateelectrode high frequency surface discharge experimental platform was established. The experiment was carried out by the constant sinusoidal voltage value, and the discharge development morphology, discharge characteristic parameters, discharge spectrum and surface damage of different stages were obtained. The results show that the surface discharge shows a strong polarity effect, the discharge times and discharge amplitude of positive half cycle are both greater than the negative half cycle. The development of polyimide surfacedischarge under highfrequency electrical stress passes through corona discharge-streamer discharge-flashover, no spark discharge phenomenon, and the damage of the film by surface flashover is much greater than the power frequency electrical stress. With the formation of protrusion and "crystalline solids" on the insulating surface, the electric field structure is distorted to affect the discharge development. As a result, the discharge amplitude, times and phase distribution present specific changes in different stages of discharge.
|
Received: 06 July 2018
Published: 13 August 2019
|
|
|
|
|
[1] 李子欣, 高范强, 赵聪, 等. 电力电子变压器技术研究综述[J]. 中国电机工程学报, 2018, 38(5): 1274-1289. Li Zixin, Gao Fanqiang, Zhao Cong, et al.Research review of power electronic transformer technologies[J]. Proceedings of the CSEE, 2018, 38(5): 1274-1289. [2] Baek S, Du Yu, Wang Gangyao.Design considerations of high voltage and high frequency transformer for solid state transformer application[C]// IECON 2010-6th Annual Conference on IEEE Industrial Electronics Society, North Carolina State, 2010: 421-426. [3] 韩帅, 李庆民, 刘伟杰, 等. 温-频耦合效应对高频固态变压器绝缘局部放电特性的影响[J]. 电工技术学报, 2015, 30(2): 204-210. Han Shuai, Li Qingmin, Liu Weijie, et al.Impacts of coupled temperature-frequency effects on partial discharge characteristics of high frequency solid state transformer insulation[J]. Transactions of China Electrotechnical Society, 2015, 30(2): 204-210. [4] 刘涛, 韩帅, 李庆民, 等. 频变电应力下高频电力变压器绝缘沿面放电形态及发展过程[J]. 电工技术学报, 2016, 31(19): 199-207. Liu Tao, Han Shuai, Li Qingmin, et al.Patterns and development of the surface discharge of high frequency power transformer insulation under frequency-dependent electric stress[J]. Transactions of China Electrotechnical Society, 2016, 31(19): 199-207. [5] 齐波, 魏振, 李成榕, 等. 交直流复合电场中油纸绝缘沿面放电现象及特征[J]. 电工技术学报, 2016, 31(10): 59-67. Qi Bo, Wei Zhen, Li Chengrong, et al.The phenomena and characteristics of oil-paper insulation surface discharge under AC and DC voltage[J]. Transactions of China Electrotechnical Society, 2016, 31(10): 59-67. [6] 聂一雄, 徐卫东, 周文文, 等. 12kV固体绝缘开关柜中绝缘气隙缺陷的放电特征[J]. 电工技术学报, 2018, 33(12): 2894-2902. Nie Yixiong, Xu Weidong, Zhou Wenwen, et al.Discharge characteristics of air-gap defects in insulating material of 12kV solid insulated switchgear[J]. Transactions of China Electrotechnical Society, 2018, 33(12): 2894-2902. [7] 聂洪岩, 张潮海, 顾哲屹, 等. 局部放电条件下干式空心电抗器匝间绝缘的电老化特性研究[J]. 电工技术学报, 2018, 33(13): 3071-3079. Nie Hongyan, Zhang Chaohai, Gu Zheyi, et al.The research on electrical aging characteristics of turn-to-turn insulation of dry-type air core reactor under partial discharge[J]. Transactions of China Electrotechnical Society, 2018, 33(13): 3071-3079. [8] 孙志, 王暄, 韩柏, 等. 聚酰亚胺薄膜表面电荷的开尔文力显微镜研究[J]. 中国电机工程学报, 2014, 34(12): 1957-1964. Sun Zhi, Wang Xuan, Han Bai, et al.Research on surface charges of polyimide films by the Kelvin force microscope[J]. Proceedings of the CSEE, 2014, 34(12): 1957-1964. [9] Zainuddin H, Mitchinson P M, Lewin P L.Investigation on the surface discharge phenomenon at the oil-pressboard interface[C]// IEEE International Conference on Dielectric Liquids(ICDL), Trondheim, 2011: 1-4. [10] 谢庆, 梁少栋, 阴凯, 等. 不同电场下环氧树脂直流沿面闪络特性及其闪络电压分析[J]. 高电压技术, 2018, 44(6): 1757-1765. Xie Qing, Liang Shaodong, Yin Kai, et al.Characteristics on DC surface flashover of epoxy resin and analysis of flashover voltage under different electric field[J]. High Voltage Engineering, 2018, 44(6): 1757-1765. [11] Raghuveer M R, Kolaczkowski Z.Surface electric strength of process board under AC and DC and conventional stresses[J]. IEEE Transactions on Electrical Insulation, 1990, 25(2): 341-350. [12] Ram S S T, Kamaraju V, Singh B P. Flashover behavior of converter transformer insulation subjected to superimposed AC and DC voltages[C]// Proceedings of IEEE Conference on Electrical Insulation and Dielectric Phenomena, Arlington, USA, 1994: 810-815. [13] 罗杨, 吴广宁, 刘继午, 等. 表面放电对聚酰亚胺薄膜材料的电气损伤特性研究[J]. 中国电机工程学报, 2013, 33(25): 187-195. Luo Yang, Wu Guangning, Liu Jiwu, et al.Electrical damage characteristics of polyimide film caused by surface discharge[J]. Proceedings of the CSEE, 2013, 33(25): 187-195. [14] 严家明, 廖瑞金, 杨丽君, 等. 油浸绝缘纸局部放电损伤产物分析[J]. 电工技术学报, 2011, 26(5): 184-191. Yan Jiaming, Liao Ruijin, Yang Lijun, et al.Analysis of damage products of oil-impregnated insulation paper caused by partial discharge[J]. Transactions of China Electrotechnical Society, 2011, 26(5): 184-191. [15] 谢庆, 付可欣, 陆路, 等. 环氧树脂真空沿面闪络后表面形貌的AFM分析及分形特征提取[J]. 电工技术学报, 2017, 32(16): 245-255. Xie Qing, Fu Kexin, Lu Lu, et al.AFM analysis and fractal characteristics extraction of the surface morphology of epoxy resin after vacuum flashover[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 245-255. [16] Tang Junping, Qiu Aici, Li Yang, et al.Process of surface flashover in vacuum under nanosecond pulse[J]. IEEE Transactions on Plasma Science, 2010, 38(1):53-58. [17] 周远翔, 孙清华, 李光范, 等. 空间电荷对油纸绝缘击穿和沿面闪络的影响[J]. 电工技术学报, 2011, 26(2): 27-33. Zhou Yuanxiang, Sun Qinghua, Li Guangfan, et al.Effects of space charge on breakdown and creeping discharge of oil-paper insulation[J]. Transactions of China Electrotechnical Society, 2011, 26(2): 27-33. [18] 陈义龙, 齐波, 李成榕, 等. 交直流复合电场下油纸绝缘界面电荷对沿面闪络电压的影响[J]. 电网技术, 2014, 38(4): 1070-1075. Chen Yilong, Qi Bo, Li Chengrong, et al.Impact of interfacial charge of oil-pressboard insulation on surface flashover voltage under compound AC-DC electric field[J]. Power System Technology, 2014, 38(4): 1070-1075. [19] GB157-2001. 中华人民共和国国家标准—圆锥的锥度与锥角系列[S]. 北京: 中国标准出版社, 2001. [20] 刘熊, 林海丹, 梁义明, 等. 空气中微秒脉冲沿面放电对环氧树脂表面特性影响研究[J]. 电工技术学报, 2015, 30(13): 158-165. Liu Xiong, Lin Haidan, Liang Yiming, et al.Effect of atmospheric-pressure microsecond pulsed discharges on epoxy resin surface[J]. Transactions of China Electrotechnical Society, 2015, 30(13): 158-165. [21] 黄河. 直流电压下聚合物表面电荷分布规律及其对沿面闪络特性影响的研究[D]. 北京: 华北电力大学, 2017. [22] 谢军. 变压器油纸绝缘局部放电劣化规律及诊断方法[D]. 北京: 华北电力大学, 2016. [23] 梁龄予, 王耀晶, 闫颖, 等. 玉米芯吸附水中Cr(VI)的特性及SEM-EDS表征分析[J]. 生态环境学报, 2015, 24(2): 305-309. Liang Lingyu, Wang Yaojing, Yan Ying, et al.Adsorption property of Cr(VI) from aqueous solution by corncob and the SEM-EDS analysis on its characters[J]. Ecology and Environmental Sciences, 2015, 24(2): 305-309. [24] 翟青霞, 黄海蛟, 刘东, 等. 解析SEM&EDS分析原理及应用[J]. 检验与测试, 2012, 21(5): 66-70. Zhai Qingxia, Huang Haijiao, Liu Dong, et al.Analysis the theory and application of SEM and EDS analytical method[J]. Inspection and Test, 2012, 21(5): 66-70. [25] Peter H F M.Degradation of solid dielectrics due to internal partial discharge: some thoughts on progress madeand where to go now[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 12(5): 905-913. [26] Mayoux C.Degradation of insulating materials under electrical stress[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2000, 7(5): 590-601. [27] 王伟, 屠幼萍. 高电压技术[M]. 北京: 机械工业出版社, 2011: 14-20. [28] Niemeyer L.A generalized approach to partial discharge modeling[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1995, 2(4): 510-528. |
|
|
|