|
|
Application of Improved LSTM Method in Sensor Fault Detection of the Chiller |
Li Donghui, Yin Haiyan, Zheng Bowen, Liu Lingling |
School of Electrical and Information Engineering Tianjin University Tianjin 300072 China |
|
|
Abstract At present, the sensor deviation fault detection of the water-cooled chiller is unexpected all over the world. Long short-term memory (LSTM) is suitable for processing high-dimensional, high-coupling, high-time correlation data. Taking into account the characteristics of LSTM, this paper proposed a deep learning method based on improved LSTM for the sensor deviation fault detection of the water-cooled chiller. The paper collected sensor data of the water-cooled chiller on site to train the improved LSTM network. It could be know through simulation experiments that the detection efficiency of different sensors is different, and the results were compared with the results of three other methods: auto encoder, principal component analysis (PCA) and standard LSTM. Finally, the detection efficiency of the method proposed in this paper is significantly better than the other three methods in sensor deviation fault detection of the water-cooled chiller. Furthermore, the detection efficiency of the proposed method has better symmetry for positive and negative fault levels with same absolute magnitude. Finally, it was proved that the proposed network has good generalization ability.
|
Received: 19 April 2018
Published: 14 June 2019
|
|
|
|
|
[1] 李冬辉, 王乐英, 李晟. 基于PCA的空调系统传感器故障诊断[J]. 电工技术学报, 2008, 23(6): 130-136. Li Donghui, Wang Yueying, Li Sheng.Fault diagnosis of sensors in air-conditioning system based on PCA method[J]. Transactions of China Electrotechnical Society, 2008, 23(6): 130-136. [2] 杨亚伟. 基于KPCA法的定风量空调系统传感器故障诊断[D]. 天津:天津大学, 2010. [3] 杨明, 柴娜, 李广, 等. 基于位域运动误差观测器的齿轮断齿故障诊断[J]. 电工技术学报, 2018, 33(6): 1285-1292. Yang Ming, Chai Na, Li Guang, et al.Diagnosis of the gear tooth-broken fault based on the kinematic error observer in spatial domain[J]. Transactions of China Electrotechnical Society, 2018, 33(6):1285-1292. [4] 夏金辉, 郭源博, 张晓华. 单相脉宽调制整流器传感器故障诊断与容错控制[J]. 电工技术学报, 2017, 32(20): 160-170. Xia Jinhui, Guo Yuanbo, Zhang Xiaohua.Sensor fault diagnosis and fault tolerant control for single-phase PWM Rectifier[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 160-170. [5] 张珂, 宋文丽, 石怀涛, 等. 基于改进核主元分析的故障检测方法研究[J]. 控制工程, 2017, 24(2): 418-424. Zhang Ke, Song Wenli, Shi Huaitao, et al.Fault detection based on improved kernel principal component analysis[J]. Control Engineering of China, 2017, 24(2): 418-424. [6] 胡云鹏, 陈焕新, 周诚, 等. 基于小波去噪的冷水机组传感器故障检[J]. 华中科技大学学报, 2013, 41(3): 16-24. Hu Yunpeng, Chen Huanxin, Zhou Cheng, et al.Chiller sensor fault detection using wavelet de-noising[J]. Journal of Huazhong University of Science and Technology, 2013, 41(3): 16-24. [7] 胡云鹏. 基于主元分析的冷水机组传感器故障检测效率研究[D]. 武汉: 华中科技大学, 2013. [8] Hu Yunpeng, Chen Huanxin, Xie Junlong.Chiller sensor fault detection using a self-adaptive principal component analysis method[J]. Energy and Buildings, 2012, 54: 252-258. [9] Ma Xiaolei, Tao Zhimin, Wang Yinhai, et al.Long short-term memory neural network for traffic speed prediction using remote microwave sensor data[J]. Transportation Research Part C: Emerging Technologies, 2015, 54: 187-197. [10] Wei Daqian, Wang Bo, Lin Gang, et al.Research on unstructured text data mining and fault classification based on RNN-LSTM with malfunction inspection report[J]. Energies, 2017, 10(3): 406-425. [11] Yuan Mei, Wu Yuting, Li Lin.Fault diagnosis and remaining useful life estimation of aero engine using LSTM neural network[C]//2016 IEEE International Conference on Aircraft Utility Systems (AUS), Beijing, China, 2016: 135-140. [12] Zhao Zheng, Chen Weihai, Wu Xingming, et al.LSTM network: a deep learning approach for short-term traffic forecast[J]. IET Intelligent Transport Systems, 2017, 11(2): 68-75. [13] 朱乔木, 李弘毅, 王子琪, 等. 基于长短期记忆网络的风电场发电功率超短期预测[J]. 电网技术, 2017, 41(12): 3797-3802. Zhu Qiaomu, Li Hongyi, Wang Ziqi, et al.Short-term wind power forecasting based on LSTM[J]. Power System Technology, 2017, 41(12): 3797-3802. [14] 张亮, 黄曙光, 石昭祥. 基于LSTM型RNN的CAPTCHA识别方法[J]. 模式识别与人工智能, 2011, 24(1): 40-47. Zhang Liang, Huang Shuguang, Shi Zhaoxiang.The CAPTMA identification method based on LSTM type RNN[J]. Pattern Recognition and Artificial Intelligence, 2011, 24(1): 40-47. [15] Gers F A, Schmidhuber J.Recurrent nets that time and count[C]//Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, Como, Italy, 2000: 189-194. [16] 包晓安, 常浩浩, 徐海, 等. 基于LSTM 的智能家居机器学习系统预测模型研究[J]. 浙江理工大学学报, 2018, 39(2): 224-231. Bao Xiaoan, Chang Haohao, Xu Hai, et al.Research on LSTM-based prediction model of smart home machine learning system[J]. Journal of Zhejiang Institute of Science and Technology, 2018, 39(2): 224-231. [17] Kingma D P, Adam B A J. A method for stochastic optimization[C]//The 3rd International Conference for Learing Representations, San Diego, 2015. [18] Graves A, Schmidhuber J.Framewise phoneme classification with bidirectional LSTM and other neural network architectures[J]. Neural Networks, 2005, 18(5-6): 602-610. [19] 杨明, 董传洋, 徐殿国. 基于电机驱动系统的齿轮故障诊断方法综述[J]. 电工技术学报, 2016, 31(4): 58-63. Yang Ming, Dong Chuanyang, Xu Dianguo.Review of gear fault diagnosis methods based on motor drive system[J]. Transactions of China Electrotechnical Society, 2016, 31(4): 58-63. [20] 史丽萍, 王攀攀, 胡泳军, 等. 基于骨干微粒子群法和支持向量机的电机转子断条故障诊断[J]. 电工技术学报, 2014, 29(1): 147-155. Shi Liping, Wang Panpan, Hu Yongjun, et al.Broken rotor bar fault diagnosis of induction motors based on bare-bone particle swarm optimization and support vector machine[J]. Transactions of China Electrotechnical Society, 2014, 29(1): 147-155. [21] 刘辉海, 赵星宇, 赵洪山, 等. 基于深度自编码网络模型的风电机组齿轮箱故障检测[J]. 电工技术学报, 2017, 32(17): 156-163. Liu Huihai, Zhao Xingyu, Zhao Hongshan, et al.Fault detection of wind turbine gearbox based on deep autoencoder network[J]. Transactions of China Electrotechnical Society, 2017, 32(17): 156-163. |
|
|
|