|
|
Effectof Interfacial Roughness of Sliding Electrical Contact on the Melting Characteristics of Armature |
Li Bai, Lu Junyong, Tan Sai, Jiang Yuanzhi, Zhang Yongsheng |
National Key Laboratory of Science and Technology on Vessel Integrated Power System Naval University of Engineering Wuhan430074 China |
|
|
Abstract In the process of electromagnetic launch, the surface melting of the armature will change the contact state betweenarmature and rail. Once the contact state is destroyed, the transition is easy to occur. Therefore, it is necessary to analyze the melting characteristics of the surface of armature. Considering the contact surface roughness between armature and rail, the Reynolds equation of the metal liquid layer of the contact surface is listed, the temperature field, stress field and electromagnetic field are coupled, and the thermo-elastic-magnetohydrodynamics model is established, based on this,the effect of roughness magnitude and distribution of the contact surface on the surface melting speed of armature and thickness of metal liquid layer are analyzed. Under the setting parameters, the results show thatthe greater the magnitude of contact surface roughness, the bigger melting speed of the surface of armature, and at the same time, the greater the minimum thickness of metal liquid layer.Compared to the distribution of roughness, the magnitude ofcontact surface roughness has a greater effect. The analysis results are of great significance for improving the contact state between armature and rail and avoiding the transition.
|
Received: 26 June 2017
Published: 12 April 2018
|
|
|
|
|
[1] Wang Zhiheng, Wan Min, Li Xiaojiang.Numerical modeling of electromagnetic railgun rail temperature field[J]. International Journal of Applied Electromagnetics and Mechanics, 2016, 51(2): 175-183. [2] Benton T, Stefani F, Satapathy S, et al.Numerical modeling of melt-wave erosion in conductor[J]. IEEE Transactions on Magnetics, 2003, 39(1): 129-133. [3] Stefani F, Merrill R.Experiments to measure melt-wave erosion in railgun armatures[J]. IEEE Transactions on Magnetics, 2003, 39(1): 188-192. [4] Watt T, Stefani F.The effect of current and speed on perimeter erosion in recovered armatures[J]. IEEE Transactions on Magnetics, 2005, 41(1): 448-452. [5] 张改杰, 阮江军, 刘守豹, 等. 固体C型电枢几何结构优化设计[J]. 电气技术, 2010(增刊1): 19-23. Zhang Gaijie, RuanJiangjun, Liu Shoubao, et al. The optimization design of geometric structure for the solid C-shaped armature[J]. Electrical Engineering, 2010(S1): 19-23. [6] 陈忠华, 唐博, 时光, 等. 弓网多目标滑动电接触下最优压力载荷[J]. 电工技术学报, 2015, 30(17): 154-160. Chen Zhonghua, Tang Bo, Shi Guang, et al.Optimal pressure load under multi-objective sliding electric contact in the pantograph-catenary system[J]. Transactions of China Electrotechnical Society, 2015, 30(17): 154-160. [7] 周蠡, 鲁铁成, 张博, 等. 基于三维分形接触电阻模型的粗糙表面多物理场耦合分析[J]. 电工技术学报, 2015, 30(14): 226-232. Zhou Li, Lu Tiecheng, Zhang Bo, et al.Multi-physics coupling analysis of rough surfaces using 3D fractal model[J]. Transactions of China Electrotechnical Society, 2015, 30(14): 226-232. [8] Singer I L, Veracka M J, Boyer C N, et al.Wear behavior of lubricant-conditioned copper rails and armatures in a railgun[J]. IEEE Transactions on Plasma Science, 2011, 39(1): 138-143. [9] 冯登. 电枢轨道高速滑动电接触界面热流体动力润滑研究[D]. 武汉: 华中科技大学, 2014. [10] Wang Lei.Modeling of the armature-rail interface in an electromagnetic launcher with lubricant injection[D]. Atlanta: Georgia Institute of Technology, 2008. [11] 金龙文, 李军. 电磁轨道炮物理场模化方法下枢轨界面润滑性能的相似性[J]. 高电压技术, 2016, 42(9): 2850-2856. Jin Longwen, Li Jun.Similarity of lubrication in armature-rail interface under the condition of electromagnetic railgun’s physical field scaling method[J]. High Voltage Engineering, 2016, 42(9): 2850-2856. [12] Hsieh K T, Satapathy S, Hsieh M T.Effects of pressure-dependent contact resistivity on contact interfacial conditions[J]. IEEE Transactions on Magnetics, 2009, 45(1): 314-315. [13] 温诗铸, 黄平. 摩擦系数原理[M]. 3版. 北京:清华大学出版社, 2008. [14] 许良军, 芦娜, 林雪燕, 等. 电接触理论、应用与技术[M]. 北京:机械工业出版社, 2010. [15] Patir N, Cheng H S.Application of average flow model to lubrication between rough sliding surfaces[J]. Journal of Lubrication Technology, 1979, 101(2): 220-229. [16] 汤亮亮. 电磁发射中枢轨接触界面金属液化层特性的实验与理论研究[D]. 武汉: 华中科技大学, 2015. [17] 肖铮. 轨道载流滑动接触面摩擦磨损研究[D]. 武汉: 华中科技大学, 2012. [18] 刘旭堃, 于歆杰, 刘秀成, 等. 电磁轨道炮运行阶段系统发射效率和电枢出膛动能研究[J]. 电工技术学报, 2017, 32(3): 210-217. Liu Xukun, Yu Xinjie, Liu Xiucheng, et al.Researches on the system launch efficiency and the armature muzzle kinetic energy of a constructed electromagnetic railgun[J]. Transactions of China Electrotechnical Society, 2017, 32(3): 210-217. [19] 刘旭堃, 于歆杰, 刘秀成. 电容储能型脉冲电源分时分段触发策略自动计算方法[J]. 电工技术学报, 2016, 31(11): 186-193. Liu Xukun, Yu Xinjie, Liu Xiucheng.An automatic calculation method for the triggering strategy of the capacitive pulsed-power supply[J]. Transactions of China Electrotechnical Society, 2016, 31(11): 186-193. [20] 马伟明, 肖飞, 聂世雄. 电磁发射系统中电力电子技术的应用与发展[J]. 电工技术学报, 2016, 31(19): 1-10. Ma Weiming, Xiao Fei, NieShixiong. Applications and development of power electronics in electromagneticlaunch system[J]. Transactions of China Electrotechnical Society, 2016, 31(19): 1-10. [21] 曹荣刚, 苏明, 李士忠, 等. 脉冲大电流高速滑动电接触下轨道槽蚀现象的总结与分析[J]. 高电压技术, 2016, 42(9): 2822-2829. Cao Ronggang, Su Ming, Li Shizhong, et al.Summarize and analysis of rail-gun’s grooving phenomenon with large pulse current and high-velocity sliding electrical contact[J]. High Voltage Engineering, 2016, 42(9): 2822-2829. [22] Meger R A, Cooper K P, Jones H N, et al.Analysis of rail surfaces from a multishotrailgun[J]. IEEE Transactions on Magnetics, 2005, 41(1): 211-213. |
|
|
|