|
|
Review of the Research on Subsynchronous Oscillation Issues in Electric Power System with Renewable Energy Sources |
Xiao Xiangning, Luo Chao, Liao Kunyu |
School of Electrical and Electronic Engineering North China Electric Power University Beijing 102206 China |
|
|
Abstract With the increasing penetration of renewable energy sources, especially the wind power generation, and broad application of the high-power power electronic technology, electric power system with renewable energy sources is evolved, which is constituted by complicated AC-DC system with multi energy resources and multi conversions. As a result, new subsynchronous oscillation (SSO) problems are prominent constantly. The concept and connotation of SSO is extended gradually. And various intricate issues, such as their causes, forms, impact, monitoring and countermeasures attract wide attention throughout the world again. This paper firstly summarizes the basic issues and development trend of SSO, and analyzes the characteristics and forms of SSO problems in China. Finally, new issues of current SSO research, challenges ahead, especially in mitigation measures, and the corresponding strategies are put forward, aiming at promoting the SSO study in China.
|
Received: 20 January 2017
Published: 29 March 2017
|
|
|
|
|
[1] IEEE Subsynchronous Resonance Working Group. Terms, definitions and symbols for subsynchronous oscillations[J]. IEEE Transactions on Power Apparatus and Systems, 1985, 104(6): 1326-1334. [2] Concordia C, Carter G K. Negative damping of electrical machinery[J]. Transactions of the American Institute of Electrical Engineers, 1941, 60(3): 116- 119. [3] Butler J W, Concordia C. Analysis of series capacitor application problems[J]. Transactions of the American Institute of Electrical Engineers, 1937, 56(8): 975- 988. [4] Walker D N, Bowler C E J, Jackson R L, et al. Results of subsynchronous resonance test at Mohave[J]. IEEE Transactions on Power Apparatus and Systems, 1975, 94(5): 1878-1889. [5] Bahrman M, Larsen E V, Piwko R J, et al. Experience with HVDC-turbine-generator torsional interaction at Square Butte[J]. IEEE Transactions on Power Apparatus and Systems, 1980, PAS-99(3): 966-975. [6] Koo M, Sabaté A, Magalló P, et al. Field tests and analysis of torsional interaction between the coal Creek turbine-generators and the CU HVDC system[J]. IEEE Transactions on Power Apparatus & Systems, 1981, 100(1): 336-344. [7] 程时杰, 曹一家, 江全元. 电力系统次同步振荡的理论与方法[M]. 北京: 科学出版社, 2009. [8] 肖湘宁. 新一代电网中多源多变换复杂交直流系统的基础问题[J]. 电工技术学报, 2015, 30(15): 1-14. Xiao Xiangning. Basic problems of the new complex AC-DC power grid with multiple energy resources and multiple conversions[J]. Transactions of China Electrotechnical Society, 2015, 30(15): 1-14. [9] Xiao Xiangning, Zhang Jian, Gao Benfeng, et al. Simulation and study on mitigation measures of frequent subsynchronous oscillation with low amplitude at multi power plants[J]. Science China Technological Sciences, 2013, 56(6): 1340-1353. [10] Lawrence C Gross. Sub-synchronous grid conditions: new event, new problem, and new solutions[C]//37th Aunnal Western Protective Relay Conference, Spokane Washington, 2010: 1-19. [11] Adams J, Carter C, Huang Shun-Hsien. ERCOT experience with sub-synchronous control interaction and proposed remediation[C]//Transmission and Distribution Conference and Exposition (T&D), IEEE PES, Orlando, 2012: 1-5. [12] Narendra K, Fedirchuk D, Midence R, et al. New microprocessor based relay to monitor and protect power systems against sub-harmonics[C]//IEEE Pro- ceedings of Electrical Power Energy and Conference (EPEC), Winnipeg, 2011: 438-443. [13] Liang Wang, Xie X R, Jiang Q R. Investigation of SSR in practical DFIG-based wind farms connected to a series-compensated power system[J]. IEEE Transactions on Power Systems, 2014, 30(8): 1-8. [14] 谢小荣, 刘华坤, 贺静波, 等. 直驱风机风电场与交流电网相互作用引发次同步振荡的机理与特性分析[J]. 中国电机工程学报, 2016, 36(9): 2366- 2372. Xie Xiaorong, Liu Huakun, He Jingbo, et al. Mechanism and characteristics of subsynchronous oscillation caused by the interaction between full- converter wind turbines and AC systems[J]. Pro- ceedings of the CSEE, 2016, 36(9): 2366-2372. [15] Pilotto L A S, Long W F, Edris A A. Basic mechanisms of control interactions among power electronic-assisted power systems[C]//IEEE/PES, IEEE Transmission and Distribution Conference and Exposition, Atlanta, GA, 2001, 1: 397-402. [16] IEEE Subsynchronous Resonance Working Group. First benchmark model for computer simulation of subsynchronous resonance[J]. IEEE Transactions on Power Apparatus and Systems, 1977, 96(5): 1565- 1672. [17] IEEE Subsynchronous Resonance Working Group. Second benchmark model for computer simulation of subsynchronous resonance[J]. IEEE Transactions on Power Apparatus and Systems, 1985, 96(5): 1057- 1066. [18] 张剑, 肖湘宁, 高本锋, 等. 双馈风力发电机的次同步控制相互作用机理与特性研究[J]. 电工技术学报, 2013, 28(12): 142-149. Zhang Jian, Xiao Xiangning, Gao Benfeng, et al. Mechanism and characteristic study on sub- synchronous control interaction of a DFIG-based wind-power generator[J]. Transactions of China Electrotechnical Society, 2013, 28(12): 142-149. [19] 王亮, 谢小荣, 姜齐荣, 等. 大规模双馈风电场次同步谐振的分析与抑制[J]. 电力系统自动化, 2014, 38(22): 26-31. Wang Liang, Xie Xiaorong, Jiang Qirong, et al. Analysis and mitigation of SSR problems in large- scale wind farms with doubly-fed wind turbines[J]. Automation of Electric Power Systems, 2014, 38(22): 26-31. [20] 陈武晖, 宿端鹏, 汪旎, 等. 双馈风电场感应发电机效应的风险区域变化机理[J]. 中国电机工程学报, 2016, 36(20): 5469-5478. Chen Wuhui, Su Duanpeng, Wang Ni, et al. Evolving mechanism of risk region for induction generator effect of doubly-fed wind farms[J]. Proceedings of CSEE, 2016, 36(20): 5469-5478. [21] 高本锋, 刘晋, 李忍, 等. 风电机组的次同步控制相互作用研究综述[J]. 电工技术学报, 2015, 30(16): 154-161. Gao Benfeng, Liu Jin, Li Ren, et al. Studies of sub-synchronous control interaction in wind turbine generators[J]. Transactions of China Electro- technical Society, 2015, 30(16): 154-161. [22] IEEE Std 1459—2010 IEEE standard definitions for the measurement of electric power quantities under sinusoidal, nonsinusoidal, balanced, or unbalanced conditions[S]. 2010. [23] 肖湘宁, 郭春林, 高本锋, 等. 电力系统次同步振荡及其抑制方法[M]. 北京: 机械工业出版社, 2014. [24] 徐政, 张帆. 神木电厂串补送出方案次同步谐振的计算分析[J]. 高电压技术, 2007, 33(12): 111-114. Xu Zheng, Zhang Fan. SSR analysis of series compensation transmission scheme for Shenmu power plant[J]. High Voltage Engineering, 2007, 33(12): 111-114. [25] 谢小荣, 刘平, 张仁伟, 等. 托克托电厂阻塞滤波器引发机组异步自励磁的分析[J]. 电网技术, 2012, 36(4): 79-83. Xie Xiaorong, Liu Ping, Zhang Renwei, et al. Analysis on asynchronous self-excitation induced by blocking filter installed in Tuoketuo power plant[J]. Power System Technology, 2012, 36(4): 79-83. [26] 李国宝, 张明, 郭锡玖, 等. 上都电厂串补输电系统次同步谐振解决方案研究[J]. 中国电力, 2008, 41(5): 75-78. Li Guobao, Zhang Ming, Guo Xijiu, et al. The solution to SSR problem in Shangdu series compensation transmission system[J]. Electric Power, 2008, 41(5): 75-78. [27] 郑蕤. 带串联补偿的交直流并列系统次同步振荡特性研究[D]. 北京: 华北电力大学, 2011. [28] 王继伟, 鄂士平. 高岭换流站工程次同步振荡原因及解决办法[J]. 东北电力技术, 2009, 30(11): 20-21. Wang Jiwei, E Shiping. Cause and solution to subsynchronous oscillation for Gaoling converter station[J]. Northeast Electric Power Technology, 2009, 30(11): 20-21. [29] 李立浧, 洪潮. 贵广二回直流输电系统次同步振荡问题分析[J]. 电力系统自动化, 2007, 31(7): 90-93. Li Licheng, Hong Chao. Analysis of the SSO problem caused by Guizhou-Guangdong II HVDC trans- mission system[J]. Automation of Electric Power Systems, 2007, 31(7): 90-93. [30] 张剑. 间歇式次同步振荡及次同步控制互作用问题研究[D]. 北京: 华北电力大学, 2014. [31] 陈国平, 李明节, 许涛, 等. 关于新能源发展的技术瓶颈研究[J]. 中国电机工程学报, 2017, 37(1): 20-27. Chen Guoping, Li Mingjie, Xu Tao, et al. Study on technical bottleneck of new energy development[J]. Proceedings of the CSEE, 2017, 37(1): 20-27. [32] Xiao X, Luo C, Zhang J, et al. Analysis of frequently over-threshold subsynchronous oscillation and its suppression by subsynchronous oscillation dynamic suppressor[J]. IET Generation Transmission & Distribution, 2016, 10(9): 2127-2137. [33] 晏小彬, 刘天琪, 李兴源, 等. 大型风电场次同步谐振分析[J]. 华东电力, 2012(8): 1328-1333. Yan Xiaobin, Liu Tianqi, Li Xingyuan, et al. Subsynchronous oscillation of large-scale wind farm[J]. East China Electric Power, 2012(8): 1328- 1333. [34] Faried S O, Unal I, Rai D, et al. Utilizing DFIG-based wind farms for damping subsynchronous resonance in nearby turbine-generators[J]. IEEE Transactions on Power Systems, 2013, 28(1): 452- 459. [35] Alawasa K M, Mohamed A R I, Xu W. Active mitigation of subsynchronous interactions between PWM voltage-source converters and power networks[J]. IEEE Transactions on Power Electronics, 2014, 29(1): 121-134. [36] Farmer R G, Schwalb A L, Katz E. Navajo project report on subsynchronous resonance analysis and solutions[J]. IEEE Transactions on Power Apparatus & Systems, 1977, 96(4): 1226-1232. [37] Xie X, Liu P, Bai K, et al. Applying improved blocking filters to the SSR problem of the Tuoketuo power system[J]. IEEE Transactions on Power Systems, 2013, 28(28): 227-235. [38] 周长春, 刘前进. 抑制次同步谐振的TCSC主动阻尼控制[J]. 中国电机工程学报, 2008, 28(15): 130-135. Zhou Changchun, Liu Qianjin. Active damping control of TCSC for subsynchronous resonance mitigation[J]. Journal of Chinese Electrical Engin- eering Science, 2008, 28(15): 130-135. [39] 张少康, 李兴源, 张振, 等. TCSC及其主动阻尼控制对次同步谐振的抑制[J]. 电网技术, 2010, 31(1): 22-26. Zhang Shaokang, Li Xingyuan, Zhang Zhen, et al. Research on suppressing subsynchronous resonance by TCSC and its active damping control[J]. Power System Technology, 2010, 31(1): 22-26. [40] 刘敏, 周孝信, 田芳, 等. 抑制次同步振荡的可控串补附加阻尼控制[J]. 电网技术, 2010, 34(10): 65-70. Liu Min, Zhou Xiaoxin, Tian Fang, et al. Supple- mentary damping control of TCSC for subsynchronous oscillation suppression[J]. Power System Technology, 2010, 34(10): 65-70. [41] 高本锋, 肖湘宁, 赵成勇, 等. 混合串联补偿装置抑制次同步谐振的研究[J]. 电工技术学报, 2010, 25(11): 142-147. Gao Benfeng, Xiao Xiangning, Zhao Chengyong, et al. Study of hybrid series compensator on sub- synchronous resonance damping[J]. Transactions of China Electrotechnical Society, 2010, 25(11): 142- 147. [42] 朱旭凯, 周孝信, 田芳, 等. 基于本地测量信号的TCSC抑制次同步振荡附加控制[J]. 电力系统自动化, 2011, 35(23): 22-25. Zhu Xukai, Zhou Xiaoxin, Tian Fang, et al. Additional control of subsynchronous oscillation based on local measurement signal TCSC suppression[J]. Automation of Electric Power Systems, 2011, 35(23): 22-25. [43] 郑翔, 徐政, 张静. TCSC次同步谐振附加阻尼控制器[J]. 电工技术学报, 2011, 26(2):181-186. Zheng Xiang, Xu Zheng, Zhang Jing. A TCSC supplementary damping controller for SSR mitigation[J]. Transactions of China Electrotechnical Society, 2011, 26(2): 181-186. [44] Bongiorno M, Angquist L, Svensson J. A novel control strategy for subsynchronous resonance mitigation using SSSC[J]. IEEE Transactions on Power Delivery, 2008, 23(2): 1033-1041. [45] Thirumalaivasan R, Janaki M, Prabhu N. Damping of SSR using subsynchronous current suppressor with SSSC[J]. IEEE Transactions on Power Systems, 2013, 28(1): 64-74. [46] Khalilinia H, Ghaisari J. Sub-synchronous resonance damping in series compensated transmission lines using a statcom in the common bus[C]//Power and Energy Society General Meeting, Calgary, AB, 2009: 1-7. [47] Padiyar K R, Prabhu N. Design and performance evaluation of subsynchronous damping controller with STATCOM[J]. IEEE Transactions on Power Delivery, 2006, 21(3): 1398-1405. [48] Prabhu N, Janaki M, Thirumalaivasan R. Damping of subsynchronous resonance by subsynchronous current injector with STATCOM[C]//TENCON 2009, Singapore, 2009: 1-6. [49] Piwko R J, Larsen E V. HVDC system control for damping of subsynchronous oscillations[J]. IEEE Transactions on Power Apparatus and Systems, 1982, 101(7): 2203-2211. [50] 高本锋, 赵成勇, 肖湘宁. 高压直流输电系统附加次同步振荡阻尼控制器的设计与实现[J]. 高电压技术, 2010, 36(2): 501-506. Gao Benfeng, Zhao Chengyong, Xiao Xiangning. Design and implementation of SSDC for HVDC[J]. High Voltage Technology, 2010, 36(2): 501-506. [51] 唐酿, 肖湘宁, 李伟, 等. HVDC附加次同步阻尼控制器设计及其相位补偿分析[J]. 高电压技术, 2011, 37(4): 1015-1021. Tang Niang, Xiao Xiangning, Li Wei, et al. Design of HVDC additional subsynchronous damping controller and its phase compensation analysis[J]. High Voltage Technology, 2011, 37(4): 1015-1021. [52] Rauhala T, Jä rventausta P. On feasibility of SSDC to improve the effect of HVDC on subsynchronous damping on several lower range torsional oscillation modes[C]//IEEE Power and Energy Society General Meeting, Minneapolis, MN, 2010: 1-8. [53] Farmer R G, Schwalb A L. Navajo project report on subsynchronous resonance analysis and solutions[J]. IEEE Transactions on Power Apparatus and Systems, 1977, 96(4): 1226-1232. [54] Bowler C E J, Baker D H, Mincer N A, et al. Operation and test of the Navajo SSR protective equipment[J]. IEEE Transactions on Power Apparatus and Systems, 1978, 97(4): 1030-1035. [55] 谢小荣, 郭锡玖, 吴景龙, 等. 上都电厂串补输电系统附加励磁阻尼控制抑制次同步谐振的现场试验[J]. 中国电机工程学报, 2010, 30(1): 27-32. Xie Xiaorong, Guo Xijiu, Wu Jinglong, et al. Field tests of SEDC for damping subsynchronous resonance in Shangdu series-compensated transmission system[J]. Proceedings of the CSEE, 2010, 30(1): 27-32. [56] 吴熙, 蒋平. SEDC与TCSC联合抑制次同步振荡的研究[J]. 电工技术学报, 2012, 27(4): 179-184. Wu Xi, Jiang Ping. Research on sub-synchronous oscillation mitigation using supplementary excitation damping controller and thyristor controlled series capacitor[J]. Transactions of China Electrotechnical Society, 2012, 27(4): 179-184. [57] Ramey D G, Kimmel D S, Dorney J W, et al. Dynamic stabilizer verification tests at the San Juan station[J]. IEEE Transactions on Power Apparatus & Systems, 1982, PER-1(12): 5011-5019. [58] 张帆, 徐政. 采用SVC抑制发电机次同步谐振的理论与实践[J]. 高电压技术, 2007, 33(3): 26-31. Zhang Fan, Xu Zheng. Study on the theory and practice of SVC suppressing subsynchronous resonance of generator[J]. High Voltage Technology, 2007, 33(3): 26-31. [59] 岑炳成, 刘涤尘, 董飞飞, 等. 抑制次同步振荡的SVC非线性控制方法[J]. 电工技术学报, 2016, 31(4): 129-135. Cen Bingcheng, Liu Dichen, Dong Feifei, et al. Nonlinear control method of static var compensator for damping subsynchronous oscillation[J]. Transa- ctions of China Electrotechnical Society, 2016, 31(4): 129-135. [60] 李伟, 肖湘宁, 赵洋. 无功发生源抑制次同步振荡的机理分析[J]. 电工技术学报, 2011, 26(4): 168-174. Li Wei, Xiao Xiangning, Zhao Yang. Study on the mechanism of suppressing subsynchronous oscillation by reactive power source[J]. Transactions of China Electrotechnical Society, 2011, 26(4): 168-174. [61] 张剑, 肖湘宁, 高本锋. 并联型无源与有源次同步振荡阻尼装置对比分析[J]. 电力自动化设备, 2014, 34(6): 77-82. Zhang Jian, Xiao Xiangning, Gao Benfeng. Com- parative analysis of shunt-type passive and active sub-synchronous oscillating damping devices[J]. Electric Power Automation Equipment, 2014, 34(6): 77-82. [62] 李志鹏, 谢小荣. 应用静止同步补偿器抑制次同步谐振的模态互补电流控制方法[J]. 中国电机工程学报, 2010, 30(34): 22-27. Li Zhipeng, Xie Xiaorong. Model complementary current control method for suppressing sub- synchronous resonance using static synchronous compensator[J]. Proceedings of the CSEE, 2010, 30(34): 22-27. [63] 王冠青, 孙海顺, 朱鑫要, 等. STATCOM附加电压控制抑制次同步谐振的理论和仿真[J]. 电力系统自动化, 2013, 37(11): 33-38. Wang Guanqing, Sun Haishun, Zhu Xinyao, et al. Theory and simulation of STATCOM suppression of sub-synchronous resonance by additional voltage control[J]. Automation of Electric Power Systems, 2013, 37(11): 33-38. [64] 罗超, 肖湘宁, 张剑, 等. 并联型有源次同步振荡抑制器阻尼控制策略优化设计[J]. 电工技术学报, 2016, 31(21): 150-158. Luo Chao, Xiao Xiangning, Zhang Jian, et al. The optimal damping control strategy design of parallel active subsynchronous oscillation suppressor[J]. Transactions of China Electrotechnical Society, 2016, 31(21): 150-158. [65] Zhang J, Xiao X, Zhang P, et al. Suppressing intermittent subsynchronous oscillation via sub- synchronous modulation of reactive current[J]. IEEE Transactions on Power Delivery, 2015, 30(5): 2321- 2330. [66] Irwin G D, Jindal A K, Isaacs A L. Sub-synchronous control interactions between type 3 wind turbines and series compensated AC transmission systems[C]// IEEE Power and Energy Society General Meeting, San Diego, CA, 2012: 1-6. [67] Fan Lingling, Zhu Chanxia, Miao Zhixin, et al. Modal analysis of a DFIG-based wind farm interfaced with a series compensated network[J]. IEEE Transactions on Energy Conversion, 2011, 26(4): 1010-1020. [68] Mohammadpour H A, Santi E. SSR damping controller design and optimal placement in rotor-side and grid-side converters of series-compensated DFIG-based wind farm[J]. IEEE Transactions on Sustainable Energy, 2015, 6(2): 388-399. [69] Huang P H, El Moursi M S, Xiao W D, et al. Subsynchronous resonance mitigation for series- compensated DFIG-based wind farm by using two-degree-of-freedom control strategy[J]. IEEE Transactions on Power Systems, 2014, 30(3): 1442- 1454. [70] Mohammadpour H A, Siegers J, Santi E. Controller design for TCSC using observed-state feedback method to damp SSR in DFIG-based wind farms[C]// IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte, NC, 2015: 2993- 2998. [71] Mohammadpour H A, Santi E. Modeling and control of gate-controlled series capacitor interfaced with a DFIG-based wind farm[J]. IEEE Transactions on Industrial Electronics, 2015, 62(2): 1022-1033. [72] Mohammadpour H A, Ghaderi A, Santi E. Analysis of sub-synchronous resonance in doubly-fed induction generator-based wind farms interfaced with gate- controlled series capacitor[J]. IET Generation, Transmission & Distribution, 2014, 8(12): 1998- 2011. [73] Golshannavaz S, Mokhtari M, Nazarpour D. SSR suppression via STATCOM in series compensated wind farm integrations[C]//19th Iranian Conference on Electrical Engineering, Tehran, Iran, 2011: 1-6. [74] Moharana A, Varma R K, Seethapathy R. SSR mitigation in wind farm connected to series compensated transmission line using STATCOM[J]. IEEE Power Electronics and Machines in Wind Applications, Denver, CO, 2012: 1-8. [75] Wang L, Xie X, Jiang Q, et al. Centralised solution for subsynchronous control interaction of doubly fed induction generators using voltage-sourced con- verter[J]. IET Generation, Transmission & Distri- bution, 2015, 9(16): 2751-2759. [76] 谢小荣, 郭锡玖, 吴景龙, 等. 基于电力电子变流器的机端次同步阻尼控制器研究与测试[J]. 中国电机工程学报, 2014, 34(4): 666-671. Xie Xiaorong, Guo Xijiu, Wu Jinglong, et al. Research and test of a generator terminal sub- synchronous damping controller based on power electronic converter[J]. Proceedings of the CSEE, 2014, 34(4): 666-671. [77] 陆晶晶, 肖湘宁, 张剑, 等. 次同步振荡动态稳定器抑制弱阻尼次同步振荡的机理与实验[J]. 电力系统自动化, 2015, 39(4): 135-140. Lu Jingjing, Xiao Xiangning, Zhang Jian, et al. Mechanism and experiment of subsynchronous oscillation-dynamic stabilizer for suppressing subsynchronous oscillation with weak damping[J]. Automation of Electric Power Systems, 2015, 39(4): 135-140. |
|
|
|