|
|
Feeder Differential Protection Based on Dynamic Time Warping Distance in Active Distribution Network |
Huang Chun1, Liu Penghui1, Jiang Yaqun1, Leng Hua2, Zhu Jiran2 |
1. College of Electrical and Information Engineering Hunan University Changsha 410082 China; 2. State Grid Hunan Electric Power Corporation Research Institute Changsha 410007 China |
|
|
Abstract This paper proposes a novel feeder differential protection method for active distribution network. The protection is especially suitable for such feeders where voltage transformers are not equipped or both real-time communication and time synchronization ability of feeder terminal units (FTU) are weak. Firstly, the fault starting algorithm based on phase current fault component is used to trigger FTUs on the boundary of feeder section. And then these FTUs interchange fault current sampling data of a power frequency cycle. At last, dynamic time warping (DTW) distance of the sampling data is calculated to judge whether the section is faulty. With the cooperation of fault starting algorithm and DTW algorithm which has strong ability to resist synchronization error, neither voltage transformer nor precise synchronization among FTUs is necessary. This protection is easy to implement with low requirements of real time communication and computing capacity. It is also suitable for active distribution network with multi branch lines and high penetration of distributed generation. Simulation results verify the feasibility of the proposed scheme.
|
Received: 25 July 2015
Published: 29 March 2017
|
|
|
|
|
[1] 张建华, 曾博, 张玉莹, 等. 主动配电网规划关键问题与研究展望[J]. 电工技术学报, 2014, 29(2): 13-23. Zhang Jianhua, Zeng Bo, Zhang Yuying, et al. Key issue and research prospects of active distribution network planning[J]. Transactions of China Electro- technical Society, 2014, 29(2): 13-23. [2] 林霞, 陆于平, 王联合. 分布式发电条件下的多电源故障区域定位新方法[J]. 电工技术学报, 2008, 23(11): 139-145. Lin Xia, Lu Yuping, Wang Lianhe. New fault region location scheme in distribution system with DGs[J]. Transactions of China Electrotechnical Society, 2008, 23(11): 139-145. [3] 赵波, 王财胜, 周金辉, 等. 主动配电网现状与未来发展[J]. 电力系统自动化, 2014, 38(18): 125-135. Zhao Bo, Wang Caisheng, Zhou Jinhui, et al. Present and future development trend of active distribution network[J]. Automation of Electric Power Systems, 2014, 38(18): 125-135. [4] 范明天, 张祖平, 苏傲雪, 等. 主动配电网可行技术的研究[J]. 中国电机工程学报, 2013, 33(22): 12-18. Fan Mingtian, Zhang Zuping, Su Aoxue, et al. Enabling technologies for active distribution systems[J]. Proceedings of the CSEE, 2013, 33(22): 12-18. [5] 刘健, 张小庆, 同向前, 等. 含分布式电源配电网的故障定位[J]. 电力系统自动化, 2013, 37(2): 36-42. Liu Jian, Zhang Xiaoqing, Tong Xiangqian, et al. Fault location for distribution system with distributed generations[J]. Automation of Electric Power Systems, 2013, 37(2): 36-42. [6] 丛伟, 潘贞存, 王成山, 等. 含高渗透率DG的配电系统区域纵联保护方案[J]. 电力系统自动化, 2009, 33(10): 81-85. Cong Wei, Pan Zhencun, Wang Chengshan, et al. A substation area longitudinal protection scheme for distribution system with high DG penetration[J]. Automation of Electric Power Systems, 2009, 33(10): 81-85. [7] Pradhan A K, Routray A, Madhan G S. Fault direction estimation in radial distribution system using phase change in sequence current[J]. IEEE Transactions on Power Delivery, 2007, 22(4): 2065- 2071. [8] 司新跃, 陈青, 高湛军, 等. 基于电流相角突变量方向的有源配电网保护[J]. 电力系统自动化, 2014, 38(11): 97-103. Si Xinyue, Chen Qing, Gao Zhanjun, et al. Protection scheme for active distribution system based on directions of current phase angle variation[J]. Automation of Electric Power Systems, 2014, 38(11): 97-103. [9] 刘凯, 李幼仪. 主动配电网保护方案的研究[J]. 中国电机工程学报, 2014, 34(16): 2584-2590. Liu Kai, Li Youyi. Study on solutions for active distribution grid protection[J]. Proceedings of the CSEE, 2014, 34(16): 2584-2590. [10] 刘蓓, 汪沨, 陈春, 等. 和声算法在含DG配电网故障定位中的应用[J]. 电工技术学报, 2013, 28(5): 280-284. Liu Bei, Wang Feng, Chen Chun, et al. Harmony search algorithm for solving fault location in distri- bution networks with DG[J]. Transactions of China Electrotechnical Society, 2013, 28(5): 280-284. [11] 曾博, 刘念, 张玉莹, 等. 促进间歇性分布式电源高效利用的主动配电网双层场景规划方法[J]. 电工技术学报, 2013, 28(9): 155-163. Zeng Bo, Liu Nian, Zhang Yuying, et al. Bi-level scenario programming of active distribution network for promoting intermittent distributed generation utilization[J]. Transactions of China Electrotechnical Society, 2013, 28(9): 155-163. [12] 贾清泉, 孙玲玲, 王美娟, 等. 基于节点搜索的微电网自适应保护方法[J]. 中国电机工程学报, 2014, 34(10): 1650-1657. Jia Qingquan, Sun Lingling, Wang Meijuan, et al. An adaptive protection method for micro-grid based on node searching[J]. Proceedings of the CSEE, 2014, 34(10): 1650-1657. [13] 徐光福, 张春合, 严伟, 等. 基于EPON通信的智能配电网馈线差动保护[J]. 电力系统自动化, 2014, 38(2): 91-96. Xu Guangfu, Zhang Chunhe, Yan Wei, et al. Feeder differential protection based on EPON communi- cation for smart distribution networks[J]. Automation of Electric Power Systems, 2014, 38(2): 91-96. [14] 张兆云, 陈卫, 张哲, 等. 一种广域差动保护实现方法[J]. 电工技术学报, 2014, 29(2): 297-303. Zhang Zhaoyun, Chen Wei, Zhang Zhe, et al. A method of wide-area differential protection[J]. Transactions of China Electrotechnical Society, 2014, 29(2): 297-303. [15] 邹贵彬, 高厚磊, 许春华, 等. 馈线自动化自适应快速保护控制方案[J]. 电网技术, 2013, 37(10): 2920-2925. Zou Guibin, Gao Houlei, Xu Chunhua, et al. A fast adaptive protection and control scheme for feeder automation[J]. Power System Technology, 2013, 37(10): 2920-2925. [16] 王业, 陆于平, 徐以超, 等. 基于动态时间弯曲的差动保护算法[J]. 中国电机工程学报, 2012, 32(28): 133-141. Wang Ye, Lu Yuping, Xu Yichao, et al. A differential protection algorithm based on dynamic time warping[J]. Proceedings of the CSEE, 2012, 32(28): 133-141. [17] 李海林, 杨丽彬. 基于增量动态时间弯曲的时间序列相似性度量方法[J]. 计算机科学, 2013, 40(4): 227-230. Li Hailin, Yang Libin. Similarity measure for time series based on incremental dynamic time warping[J]. Computer Science, 2013, 40(4): 227-230. [18] 杨奇逊, 黄少锋. 微型机继电保护基础[M]. 3版. 北京: 中国电力出版社, 2007. |
|
|
|