|
|
VSC-HVDC Stability Analysis and Control Parameter Setting |
Li Guoqing1, Sun Yinfeng2, Wu Xueguang3, 4 |
1. School of Electrical Engineering Northeast Dianli University Jilin 132012 China; 2. School of Electrical & Electronic Engineering North China Electric Power University Beijing 102206 China; 3. Global Energy Interconnection Research Institute Beijing 102211 China; 4. Beijing Key Laboratory of DC Power Grid Technologies and Simulation Beijing 102211 China |
|
|
Abstract According to the characteristics of the voltage source converter based high voltage direct current (VSC-HVDC), the paper divides the stability analysis of VSC-HVDC into two parts, namely VSC-HVDC DC side stability analysis and AC-DC interconnected stability analysis. Regarding the DC side stability analysis, the VSC-HVDC simplified circuit in complex-frequency domain is established, and then the equivalent loop gain is obtained, at last Middlebrook criterion judges the stability of VSC-HVDC. For the stability between VSC-HVDC and AC network, its stability principle is firstly discussed, and then the equivalent circuit of VSC is built by the structure diagram of the current loop control in dq reference frame, finally the equivalent admittance expressions of converter station are deduced. Thereafter, the AC impedance is tested through the uncharacteristic harmonics current injection method, while the frequency domain characteristic of AC-DC impedance ratio is used as stability judging criterion to find the stable control parameters domain. The time domain electromagnetic transient simulation in PSCAD/EMTDC shows the impacts of different AC impedances on VSC-HVDC system stability, which verifies the proposed stability criterion analysis and control parameter setting method.
|
Received: 25 November 2016
Published: 29 March 2017
|
|
|
|
|
[1] Cole S, Beerten J, Belmans R. Generalized dynamic VSC MTDC model for power system stability studies[J]. IEEE Transactions on Power Systems, 2010, 25(3): 1655-1662. [2] Giddani O K, Grain P A, Anaya-Lara O, et al. Small-signal stability analysis of multi-terminal VSC- based DC transmission systems[J]. IEEE Transa- ctions on Power Systems, 2012, 27(4): 1818-1830. [3] Chaudhuri N R, Majumder R, Chaud-Huri B, et al. Stability analysis of VSC MTDC grids connected to multi-machine AC systems[J]. IEEE Transactions on Power Delivery, 2011, 26(4): 2774-2784. [4] 杨洁, 刘开培, 王东旭, 等. 向无源网络供电的双端柔性直流输电系统小信号稳定性分析[J]. 中国电机工程学报, 2015, 35(10): 2400-2408. Yang Jie, Liu Kaipei, Wang Dongxu, et al. Small signal stability analysis of VSC-HVSC applied to passive network[J]. Proceedings of the CSEE, 2015, 35(10): 2400-2408. [5] 吴学光, 孙银锋, 李国庆. 柔性直流输电系统阻抗稳定性分析[J]. 南方电网技术, 2016, 10(5): 75-79. Wu Xueguang, Sun Yinfeng, Li Guoqing. Analysis of impedance stability of VSC-HVDC systems[J]. Southern Power System Technology, 2016, 10(5): 75-79. [6] 周鑫, 陈宏钧, 徐浩. 非理想电网电压下基于谐波功率注入方法的三相并网型变换器的控制[J]. 中国电机工程学报, 2016, 36(1): 215-223. Zhou Xin, Chen Hongjun, Xu Hao. Control of three- phase grid connected converter based on harmonic power injection method under the non-ideal grid voltage conditions[J]. Proceedings of the CSEE, 2016, 36(1): 215-223. [7] 熊凌飞, 韩民晓, 姚蜀军. 锁相环对多端柔性直流稳定性作用分析及参数选择研究[J]. 电工技术学报, 2015, 30(16): 203-212. Xiong Lingfei, Han Minxiao, Yao Shujun. Influence of PLL on the stability analysis of VSC-MTDC and parameter selection[J]. Transactions of China Electro- technical Society, 2015, 30(16): 203-212. [8] 陆韶琦, 徐政. 采用功率同步控制的MMC-HVDC功率极限分析[J]. 中国电机工程学报, 2016, 36(7): 1868-1876. Lu Shaoqi, Xu Zheng. Analysis of the maximum power flow in power synchronization control based MMC-HVDC[J]. Proceedings of the CSEE, 2016, 36(7): 1868-1876. [9] Harnefors L, Bongiorno M, Lundberg S. Input admittance calculation and shaping for controlled voltage-source converters[J]. IEEE Transactions on Industrial Electronics, 2007, 54(6): 3323-3334. [10] Sun Jian. Impedance-based stability criterion for grid-connected inverters[J]. IEEE Transactions on Power Electronics, 2011, 26(11): 3075-3078. [11] Turner R, Walton S, Duke R. A case criterion as applied to interconnectedstudy on the application of the Nyquist stability loads and sources on grids[J]. IEEE Transactions on Industrial Electronics, 2013, 60(7): 2740-2749. [12] 陈忠. 电池储能功率调节系统及其控制策略研究[D]. 合肥: 合肥工业大学, 2014. [13] Middlebrook R D. Input filter considerations in design and application of switching regulators[C]// IEEE Proceedings of IASAM, 1976. [14] 刘晓东, 胡勇, 方炜, 等. 直流微电网节点阻抗特性与系统稳定性分析[J]. 电网技术, 2015, 39(12): 3463-3469. Liu Xiaodong, Hu Yong, Fang Wei, et al. Analysis of node impedance characteristics and stability in DC microgrids[J]. Power System Technology, 2015, 39(12): 3463-3469. [15] 胡伟, 孙建军, 马谦, 等. 多个并网逆变器间的交互影响分析[J]. 电网技术, 2014, 38(9): 2511-2518. Hu Wei, Sun Jianjun, Ma Qian, et al. Analysis on interactive influences among multi grid-connected inverters[J]. Power System Technology, 2014, 38(9): 2511-2518. [16] 周林, 张密, 居秀丽, 等. 电网阻抗对大型并网光伏系统稳定性影响分析[J]. 中国电机工程学报, 2013, 33(34): 34-41. Zhou Lin, Zhang Mi, Ju Xiuli, et al. Stability analysis of large-scale photovoltaic plants due to grid impe- dances[J]. Proceedings of the CSEE, 2013, 33(34): 34-41. [17] 杨明, 周林, 张东霞, 等. 考虑电网阻抗影响的大型光伏电站并网稳定性分析[J]. 电工技术学报, 2013, 28(9): 214-223. Yang Ming, Zhou Lin, Zhang Dongxia, et al. Stabilityanalysis of large-scale photovoltaic power plants for the effect of grid impedance[J]. Transa- ctions of China Electrotechnical Society, 2013, 28(9): 214-223. [18] 谢少军, 季林, 许津铭. 并网逆变器电网阻抗检测技术综述[J]. 电网技术, 2015, 39(2): 320-326. Xie Shaojun, Ji Lin, Xu Jinming. Review of grid impedance estimation for grid-connected inverter[J]. Power System Technology, 2015, 39(2): 320-326. |
|
|
|